Advances in Crop Breeding | Doi : 10.37446/edibook072024/141-165

PAID ACCESS | Published on : 31-Dec-2024

Advanced Breeding in Quality Traits - A Review on Biofortification

  • Indraja G
  • Lecturer (Horticulture- Vegetable Science), Dr. YSRHU-SSPG Horticulture Polytechnic, Madakasira, Dr. Y.S.R Horticultural University, Andhra Pradesh, India.
  • Dharma Teja P
  • Assistant Professor (Genetics and Plant Breeding), CAU, Imphal, India.
  • Bhargavi P
  • College of Horticulture, Anantharajupeta, Dr. Y.S.R Horticultural University, Andhra Pradesh, India.

Abstract

Biofortification is a sustainable agricultural technique that aims to improve the nutritional content of staple crops in order to alleviate micronutrient deficiencies, sometimes known as hidden hunger, which impact millions of people throughout the world. This procedure uses advanced breeding techniques such as conventional breeding, Marker-Assisted Selection (MAS), and genetic engineering to boost the concentrations of important vitamins and minerals in crops such as rice, wheat, maize, and cassava. Biofortification, which focuses on important minerals such as iron, zinc, and vitamin A, is a cost-effective and scalable option for improving public health, particularly in developing nations with limited access to diverse meals and fortified foods. Recent advancements in genomic tools, gene editing technologies like CRISPR/Cas9, and metabolic engineering have accelerated the development of biofortified crops with enhanced nutrient profiles and resilience to environmental stresses. Biofortification, as a supplemental strategy to standard nutrition interventions, has the potential to considerably reduce the burden of micronutrient deficiencies, hence improving health outcomes and meeting global food security and nutrition goals.

Keywords

Biofortification, Agriculture, Advanced breeding

References

  • Aciksoz, S.B., Yazici, A., Ozturk, L., & Cakmak, I. (2011). Biofortification of wheat with iron through soil and foliar application of nitrogen and iron fertilizers. Plant and Soil, 349, 215–225.

    Anai, T., Koga, M., Tanaka, H., Kinoshita, T., Rahman, S.M., & Takagi, Y. (2003). Improvement of rice (Oryza sativa L.) seed oil quality through introduction of a soybean microsomal ω-3 fatty acid desaturase gene. Plant Cell Reports. 21, 988–992.

    Ashraf, M.Y., Mahmood, K., Ashraf, M., Akhter, J., & Hussain F. (2012). Optimal Supply of Micronutrients Improves Drought Tolerance in Legumes. In: Ashraf M, Öztürk M, Ahmad M, Aksoy A. (Eds), Crop Production for Agricultural Improvement. Springer, Dordrecht, Netherlands.

    Avaram, T., Badani, H., Galili, S., Aamir, R. (2005). Enhanced levels of methionine and cysteine in transgenic alfalfa (Medicago sativa L.) plants over-expressing the Arabidopsis cystathionine γ-synthase gene. Plant Biotechnol Journal3:71–79.

    Belford, R.K., & Sedgley, R.H. (1991). Conclusions: Ideotypes and physiology: Tailoring plants for increased production. Field Crops Research, 26, 221– 226.

    Blancquaert, D., Van Daele, J., Strobbe, S., Kiekens, F., Storozhenko, S., De Steur, H., Gellynck, X., Lambert, W., Stove, C.& Van Der Straeten, D. (2015). Improving folate (vitamin B9) stability in biofortified rice through metabolic engineering. Nature Biotechnology, 33(10), 1076-1078.

    Borg, S., Pedersen, B., Henrik., Tauris., Birgitte., Madsen., Lene., Darbani., Behrooz., Noeparvar., Shahin., Holm., & Preben. (2012). Wheat ferritins: Improving the iron content of the wheat grain. Journal of Cereal Science. 56, 204–213.

    Boy, E., Haas, J.D., Petry, N., Cercamondi, C.I., Gahutu, J.B., Mehta, S., Finkelstein, J.L., Hurrell, R.F., (2017). Efficacy of iron-biofortified crops. African Journal of Food Agriculture Nutrition Development. 17 (2), 11879–11892.

    Branca, F., & Ferrari, M. (2002). Impact of micronutrient deficiencies on growth: the stunting syndrome. Annals of Nutrition and Metabolism. 46, 8–17.

    Burkhardt, P.K., Beyer, P., Wunn, J., Kloti, A., Armstrong, G.A., Schledz, M., Von Lintig, J., & Potrykus, I. (1997). Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant Journal, 11, 1071- 1078.

    Caballero, B. (2002). Global patterns of child health: the role of nutrition. Annals of Nutrition and Metabolism. 46,3–7

    Cakmak I. (2008). Enrichment of cereal grains with zinc: agronomic or genetic biofortification. Plant Soil, 302, 1–17.

    Carciofi, M., Blennow, A., Jensen, S.L. (2012).  Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules. BMC Plant Biology, 12, 223.

    Carvalho, S.M.P., & Vasconcelos, M.W. (2013). Producing more with less: strategies and novel technologies for plant-based food biofortification. FRIN, 54, 961–971.

    Cavagnaro, T.R. (2008). The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review. Plant Soil, 304,315–325.

    Chizuru, N., Ricardo, U., Shiriki, K., & Prakash, S. (2003).  The joint WHO/FAO expert consultation on diet, nutrition and the prevention of chronic diseases: process, product and policy implications. Public Health Nutrition, 7(1a), 245–250.

    Connolly, E.L. (2008). Raising the bar for biofortification: Enhanced levels of Malnutrition 10 bioavailable calcium in carrots. Trends in Biotechnology. 26,401-403.

    Datta, S.K. (2002). Bioengineered rice for plant protection. Biotechnology and Genetic Engineering Reviews. 19, 339-356.

    Davuluri, G.R., van Tuinen, A., Fraser, P.D., Manfredonia, A., Newman, R., Burgess, D., Brummell, D.A., King, S.R., Palys, J., Uhlig, J., Bramley, P.M., Pennings, H.M., & Bowler, C. (2005).  Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nature Biotechnology, 23(7), 890-895.

    Dayod, M., Tyerman, S.D., Leigh, R.A., & Gilliham, M. (2010). Calcium storage in plants and the implications for calcium biofortification. Protoplasma. 247, 215-231.

    de Moura, F.F., Moursi, M., Angel, M.D., Angeles-Agdeppa, I., Atmarita, A., & Gironella, G.M. (2016). Biofortified β-carotene rice improves vitamin A intake and reduces the prevalence of inadequacy among women and young children in a simulated analysis in Bangladesh, Indonesia, and the Philippines. The American Journal of Clinical Nutrition. 104,769-775.

    Dhaliwal, S.S., Sharma, V., & Shukla, A.K. (2022). Impact of micronutrients in mitigation of abiotic stresses in soils and plants- A progressive step towards crop security and nutritional quality. Advances in Agronomy. 173, 1-78.

    Dong, O.X., Yu, S., Jain, R,Zhang, N,Duong, P.Q, Butler, C,Yan, Li, Lipzen, A, Joel,A.M,Barry,K.W, Schmutz, J, Tian, Li., & Ronald, P.C. (2020). Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nature Communication. 11, 1178.

    Endo, Akira, Saika, Hiroaki, Takemura, Miho, Misawa, Norihiko,Toki, & Seiichi. (2019). A novel approach to carotenoid accumulation in rice callus by mimicking the cauliflower orange mutation via genome editing. Rice, 12.

    Garg, M., Sharma, N., Sharma, S., Kapoor, P., Kumar, A., Venkatesh, C., & Priya, A. (2018). Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are improving Lives of Millions of People around the world. Frontiers in Nutrition, 5(12), 1-33.

     Gatica-Arias, A. (2019). Use of genome editing technologies for genetic improvement of crops of tropical origin. Journal of Plant Biotechnology.140, 215–244.

    Gilani, G.S., & Nasim, A. (2007). Impact of foods nutritionally enhanced through biotechnology in alleviating malnutrition in developing countries. Journal of AOAC International, 90, 1440-1444.

    Golden, M.H.N. (1991). The nature of nutritional deficiencies in relation to growth failure and poverty. Acta paediatrica Scandinavica. 374, 95–110.

    Graham, R.D., Welch, R.M., & Bouis, H.E. (2001). Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Advances in Agronomy, 70, 77–142.

    Graham, R.D., Welch, R.M., Saunders, D.A., Ortiz-Monasterio, I., Bouis, H.E., & Bonierbale, M. (2007). Nutritious subsistence food systems. Advances in Agronomy, 92, 1–74.

    Hardarson, G., & Broughton, W.J. (2004).  Maximising the use of biological nitrogen fixation in agriculture. Annals of Botany, 93(4), 477.

    Hirschi, K.A. (2009) Nutrient biofortification of food crops. Annual Review of Nutrition. 29:401-421.

    Holme, I.B., Dionisio, G., Brinch-Pedersen, H., Wendt, T., Madsen, C.K., Vincze, E., & Holm, P.B. (2012). Cisgenic barley with improved phytase activity. Plant Biotechnology Journal, 10(2), 237-247.

    Hossain, A., Mottaleb, K.A., Farhad, M., & Barma, N.C.D. (2019). Mitigating the twin problems of malnutrition and wheat blast by one wheat variety, ‘BARI Gom 33’, in Bangladesh. Acta Agrobotanica. 72(2), 1775.

    Hotz, C. B., Mc Clafferty, C., Hawkes, M., Ruel, & Babu, S. (2007). From harvest to health: Challenges for developing biofortified staple foods and determining their impact on micronutrient status. Food and Nutrition Bulletin, 28, 271–279

    Huang, J.C., Zhong, Y.J., Liu, J., Sandmann, G., & Chen, F. (2013). Metabolic engineering of tomato for high-yield production of astaxanthin. Metabolic Engineering, 17, 59-67.

    Huang, S., Wang, P., Yamaji, N., & Ma, J. F. (2020). Plant nutrition for human nutrition: Hints from rice research and future perspectives. Molecular Plant, 13, 825–835.

    Jaganathan, D., Ramasamy, K., Sellamuthu, G., Jayabalan, S., & Venkataraman, G. (2018). CRISPR for crop improvement: an update review. Frontiers in Plant Science, 9, 971–985.

    Jain, S., Rustagi, A., Kumar, D., Yusuf, M.A., Shekhar, S., and Sarin, N.B. (2019). Meeting the challenge of developing food crops with improved nutritional quality and food safety: leveraging proteomics and related omics techniques. Biotechnology Letters, 41,471–81.

    Jha, A.B., & Warkentin, T.D. (2020). Biofortification of pulse crops: status and future perspectives. Plants, 9,73.

    Johnston, A., & Bruulsema, T. (2014). 4R nutrient stewardship for improved nutrient use efficiency. Procedia Engineering, 83, 365–370.

    Kaur, N., Alok, A., Shivani, Kumar, P., Kaur, N., Awasthi, P., Chaturvedi, S., Pandey, P., Pandey, A., Pandey, A.K., & Tiwari, S. (2020). CRISPR/Cas9 directed editing of lycopene epsilon-cyclase modulates metabolic flux for β-carotene biosynthesis in banana fruit. Metabolic Engineering, 59,76-86.

    Kawakami, Y., & Bhullar, N.K. (2018). Molecular processes in iron and zinc homeostatis modulation for biofortication in rice. Journal of Integrative Plant Biology, 60(12),1181-1198.

    Khalil, A.M. (2020). The genome editing revolution: review. Journal of Genetic Engineering and Biotechnology, 18 (68): 1-16.

    Kim, M. J., Kim, J. K., Kim, H. J., Pak, J. H., Lee, J. H., Kim, D. H., & Ha, S. H. (2012). Genetic modification of the soybean to enhance the β-carotene content through seed-specific expression. PLoS One, 7(10): e48287.

    Kumar and Ravi. (2018)."Genetically Modified Mustard: Dhara Mustard Hybrid11". www.biotecharticles.com. Archived from the original on 2018-10-19. Retrieved 2018-10-05.

    Kumar, A., Anju, T., Kumar, S., Chhapekar, S.S., Sreedharan, S., & Singh, S. (2021). Molecular sciences integrating omics and gene editing tools for rapid improvement of traditional food plants for diversified and sustainable food security. International Journal of Molecular Sciences, 22, 8093.

    Kumar, K., Gambhir, G., Dass, A., Tripathi, A.K., Singh, A., Jha, A.K., Yadava, P., Choudhary, M., & Rakshit, S. (2020). Genetically modified crops: current status and future prospects. Plants, 251(4),91.

    Lai, K., Duran, C., Berkman, P.J., Lorenc, M.T., Stiller, J., Manoli, S. (2012). Single nucleotide polymorphism discovery from wheat next-generation sequence data. Plant Biotechnology Journal, 10, 743–749.

    Li, S., Liu, X., Zhou, X., Li, Y., Yang, W., & Chen, R. (2019).  Improving zinc and iron accumulation in maize grains using the zinc and iron transporter ZmZIP5. Plant & Cell Physiology. 60(9):2077-2085.

    Lorenc-Kukula, K., Wrobel-Kwiatkowska, M., Starzycki, M., & Szopa J. (2007). Engineering flax with increased flavonoid content and thus Fusarium resistance. Physiology and Molecular Plant Pathology, 70,38–48.

    Ludwig, Y., & Slamet-Loedin, I.H. (2019). Genetic biofortification to enrich rice and wheat grain iron: From genes to product. Frontiers in Plant Science. 10,833.

    Mabesa, R., Impa, S., Grewal, D., & Johnson-Beebout S. (2013). Contrasting grain-zn response of biofortification rice (Oryza sativa L.) breeding lines to foliar Zn application. Field Crops Research, 149,223–233.

    Maganti, Sowjanya, Swaminathan, Rajalakshmi, Parida, Ajay. (2019). Variation in Iron and Zinc Content in Traditional Rice Genotypes. Agricultural Research. 9. 10.1007/s40003-019-00429-3.

    Malik, K.A., & Maqbool, A. (2020) Transgenic Crops for Biofortification. Frontiers in Sustainable Food Systems, 4:1-15.

    Massot, P. E., Banakar, R., Gómez-Galera, S., Zorrilla-López, U., Sanahuja, G., Arjó, G., Miralpeix, B., Vamvaka, E., Farré, G., Rivera, S.M., Dashevskaya, S., Berman, J., Sabalza, M., Yuan, D., Bai, C., Bassie, L., Twyman, R.M., Capell, T., Christou, P., & Zhu, C. (2013). The contribution of transgenic plants to better health through improved nutrition: opportunities and constraints. Genes and Nutrition, 8(1):29-41.

    Masuda, H., Aung, M.S., & Nishizawa, N.K. (2013). Iron biofortification of rice using different transgenic approaches. Rice: A Springer Open Journal, 6(40): 1-12.

    Meenakshi, J.V., Johnson, N., Manyong,V.,  DeGroote, H., Javelosa, J.,  Yanggen, D., Naher, F., Gonzales, C., Garcia,J.,  & Meng, E. (2010). “How Cost-Effective is Biofortification in Combating Micronutrient Malnutrition? An Ex-ante Assessment” World Development, 38(1), 64-75.

     Melash,A.A.,  Mengistu, D.K., &  Aberra, D.A. (2016). Linking agriculture with health through genetic and agronomic biofortification. Agricultural Sciences. 7, 295-307.

    Mir, Z., Yadav, Prashant, Ali, Sajad, Sharma, Sandhya, Mushtaq, Muntazir, Bhat, Javaid, Tyagi, Anshika, Upadhyay, Deepali, Singh, Apekshita & Grover, Anita. (2020). Transgenic Biofortified Crops: Applicability and Challenges. 10.1007/978-981-15-2874-3_7.

    Nayak, S.N., Aravind, B., Malavalli, S.S., Sukanth, B.S., Poornima, R., Bharati, P., Hefferon, K., Kole, C., & Puppala, N. (2021) Omics Technologies to Enhance Plant Based Functional Foods: An Overview. Frontiers in Genetics, 12, 742095.

    Nestel, P., Bouis, H. E., Meenakshi, J. V., & Pfeiffer, W. (2006). Biofortification of staple food crops. Jurnal of Nutrition, 136, 1064–1067.

    Nooria, M., Adibiana, M., Sobhkhizia, A., & Eyidozehib, K. (2014). Effect of phosphorus fertilizer and mycorrhiza on protein percent, dry weight, weight of 1000 grain in wheat. International Journal of Plant Animal and Environmental Science. 4(2), 561–5644.

    Paine, J. A., Shipton, C. A., Chaggar, S., Howells, R. M., Kennedy, M. J., & Vernon, G. (2005). Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nature Biotechnol. 23, 482–487.

    Park, S., Elless, M.P., Park, J., Jenkins, A., Lim, W., & Chambers, E. (2009). Sensory analysis of calcium-biofortified lettuce. Plant Biotechnology Journal, 7, 106-117.

    Park, S.C., Kim, S.H., Park, S., Lee, H.U., Lee, J.S., Park, W.S., Ahn, M.J., Kim, Y.H., Jeong, J.C., Lee, H.S. (2015). Enhanced accumulation of carotenoids in sweetpotato plants overexpressing IbOrIns gene in purple-fleshed sweet potato cultivar. Plant Physiology and Biochemistry, 86 , 82 - 89

    Pasalu, I., Prakash, A., Mohanty, S., Krishnamurthy, P., Katti, G., Tewari, S., Prasad, J., Krishnaiah, N. (2008). Bio-intensive integrated pest management in rice. In: Rice research priorities and strategies for second green revolution. Central Rice Research Institute, Cuttack, Orissa, India.

    Peng, S., Cassman, K.G., Virmani, S.S., Sheehy, J., & Khush, G.S. (1999). Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Science, 39,1552–1559.

    Pfeiffer, W. H., & Mc Clafferty, B. (2007). Harvest Plus: breeding crops for better nutrition. Crop Science, 47, 88– 100.

    Phuphong, P., Cakmak, I., Yazici, A., Rerkasem, B., & Prom-u-Thai, C. (2020). Shoot and root growth of rice seedlings as affected by soil and foliar zinc applications. Journal of Plant Nutrition, 43(9), 1259-1267.

    Pingali, P.L. (2012). Green revolution: Impacts, limits, and the path ahead. Proc. Natl. Acad. Sci., USA  109, 12302–12308.

    Prashanth, L., Kattapagari, K.K., Chitturi, R.T., Baddam, V.R., & Prasad, L.K. (2015). A review on role of essential trace elements in health and disease. J NTR University and Health Sciences, 4, 75–85.

    Qaim, M., Alexander, J.S., & Meenakshi, J.V. 2007. Economics of biofortification. Agricultural Economics, 37(1), 119–133.

    Qaim, M., Stein, A.J., & Meenakshi, J.V. (2007). Economics of biofortification. Agric. Econ. 37(Suppl. 1): 119–33.

    Rengel, Z., Batten, G.D., & Crowley, D.E. (1999). Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crops Research, 60,27–40.

    Roda, F.A., Marques, I., Batista-Santos, P., Esquível, M.G., Ndayiragije, A., & Lidon, F.C. (2020). Rice biofortification with zinc and selenium: a transcriptomic approach to understand mineral accumulation in flag leaves. Frontiers in Genetics, 11,543.

    Schmidt, M.A., Parrott, W.A., Hildebrand, D.F., Berg, R.H., Cooksey, A., Pendarvis, K., He, Y., Mc Carthy, F., & Herman, E.M. (2015). Transgenic soya bean seeds accumulating β-carotene exhibit the collateral enhancements of oleate and protein content traits. Plant Biotechnol Journal, 13(4),590-600.

    Schneeman, B.O. (2001). Linking agricultural production and human nutrition. Journal of the Science of Food and Agriculture, 81, 3–9.

    Sestili, F., & Garcia-Molina, M.D., Gambacorta, G., Beleggia, R., Botticella, E., De Vita, P., Savatin, D.V., Masci, S., Lafiandra, D., & Provitamin, A. (2019) Biofortification of Durum Wheat through a TILLING Approach. International Journal of Molecular Sciences, 20(22):5703.

    Sharma, D., Jamra, G., Singh, U. M., Sood, S., & Kumar, A. (2017). Calcium biofortification: three pronged molecular approaches for dissecting complex trait of calcium nutrition in finger millet (Eleusine coracana) for devising strategies of enrichment of food crops. Frontiers in Plant Science, 7, 2028.

    Sheoran, S., Kumar, S., Ramtekey, V., Kar, P., Meena, R.S., & Jangir, C.K. (2022). Current status and potential of biofortification to enhance crop nutritional quality: an overview. Sustainability, 14,3301.

    Singh, S. P., Keller, B., Gruissem, W., &  Bhullar, N. K. (2017). Rice nicotianamine synthase 2 expression improves dietary iron and zinc levels in wheat. Theoretical and Applied Genetics, 130, 283–292.

    Singh, U., Praharaj, C.S., Singh, S.S., & Singh, N.P. (2016). Biofortification of Food Crops. New Delhi: Springer. 1, 490.

    Smith, S.E., & Read, D.J. (2007). Mycorrhizal Symbiosis. 3rd ed. London, UK: Elsevier

    Stevens, G.A., Finucane, M.M., De-Regil, L., Paciorek, C.J., Flaxman, S.R., & Branca, F. (2013) . Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995–2011: a systematic analysis of population-representative data. Lancet Glob Health, 1(1), 16–25.

    Swamy, M.B.P., Marundan, S., & Samia, M. (2021).  Development and characterization of GR2E Golden rice introgression lines. Scientific Reports, 11, 2496.

    Talsma, E.F., Brouwer, I.D., Verhoef, H., Mbera, G.N., Mwangi, A.M., Demir, A.Y., Maziya-Dixon, B., Boy, E., Zimmermann, M.B., & Melse-Boonstra, A. (2016). Biofortified yellow cassava and vitamin A status of Kenyan children: a randomized controlled trial. Americann Journal of Clinical Nutrition, 103(1):258-67.

    Unnevehr, L., Pray, C., & Paarlberg, R. (2007). Addressing micronutrient deficiencies: Alternative interventions and technologies. The Journal of Agrobiotechnology,10, 124–134.

    Wakeel, A., Farooq, M., Bashir, K., & Ozturk, L. (2018). Micronutrient malnutrition and biofortification: recent advances and future perspectives. In: Hossain MA, Kamiya T, Burritt DJ, Tran LSP, Fujiwara T, editors. Plant Micronutrient Use Efficiency: Molecular and Genomic Perspectives in Crop Plants. Amsterdam: Elsevier Inc. p. 225–43.

    Wei, Y., Shohag, M.J.I., & Yang, X. (2012). Biofortification and bioavailability of rice grain zinc as affected by different forms of foliar zinc fertilization. PLoS ONE. 7, e45428.

    Welch, R.M., & R.D. Graham. (1999). A new paradigm for world agriculture: Meeting human needs Productive, sustainable, nutritious. Field Crops Research, 60, 1–10.

    Wen, Yang, X., Hong Tian, X., Xhun Lu, X., Xian Cao, Y., & Hui Chen, Z. (2011). Impacts of phosphorus and zinc levels on phosphorus and zinc nutrition and phytic acid concentration in wheat (Triticum aestivum L.). Journal of the Science of Food and Agriculture, 91, 2322–2328.

    White, P. J., & Broadley, M. R. (2005). Biofortifying crops with essential mineral elements. Trends Plant Science, 10, 586–593.

    White, P.J., & Broadley, M.R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets - iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, 182, 49–84.

    Williams, M., & Yanai, R. D. (1996). Multi-dimensional sensitivity analysis and ecological implications of a nutrient uptake model. Plant Soil, 180, 311–324.

    Ye, X., Al-Babili, S., Kloti, A., Zhang, J., Lucca, P., Beyer, P.I., & Potrykus, I. (2000). Engineering the provitamin A β- Carotene biosynthetic pathway into (Carotenoid-free) rice endosperm. Science, 287, 303-305.

    Yuan, L., Wu, L., Yang, C., & Lv, Q. (2012). Effects of iron and zinc foliar applications on rice plants and their grain accumulation and grain nutritional quality. Journal of the Science of Food and Agriculture, 93, 254–261.

    Zunjare, R.U., Hossain, F., Muthusamy, V., Baveja, A., Chauhan, H.S., Bhat, J.S., & Gupta, H.S. (2018). Development of biofortified maize hybrids through marker-assisted stacking of β-carotene hydroxylase, lycopene-ε-cyclase and opaque2 genes. Frontiers in plant science, 9, 178.