Biofortification is a sustainable strategy to enhance the nutrient content of staple crops, addressing the global issue of micronutrient deficiencies, particularly in low-income and rural populations. This approach improves the nutritional quality of crops through traditional breeding and modern biotechnological methods, ensuring that essential vitamins and minerals are present in the edible parts of the plants. Biofortified crops, such as provitamin A-rich orange sweet potato, iron-enriched beans, and zinc-fortified rice, have already demonstrated success in improving public health. Future advancements in genome editing, marker-assisted selection, and the integration of biofortified traits into food processing hold promise for further enhancing nutritional security. The widespread adoption of biofortified crops can help alleviate malnutrition, particularly in vulnerable populations, by integrating nutrition into agricultural practices and improving public health outcomes globally.
Biofortification, Plant breeding, Genetic engineering, Hidden hunger, Vitamins and minerals
Agrawal, P. K., Kohli, A., Twyman, R. M., & Christou, P. (2005). Transformation of plants with multiple cassettes generates simple transgene integration patterns and high expression levels. Molecular Breeding, 16, 247-260.
Andersson, M. S., Saltzman, A., Virk, P. S., & Pfeiffer, W. H. (2017). Progress update: crop development of biofortified staple food crops under HarvestPlus. African Journal of Food, Agriculture, Nutrition and Development, 17(2), 11905-11935.
Bhardwaj, A. K., Chejara, S., Malik, K., Kumar, R., Kumar, A., & Yadav, R. K. (2022). Agronomic biofortification of food crops: An emerging opportunity for global food and nutritional security. Frontiers in Plant Science, 13, 1055278.
Bouis, H. E. (2003). Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proceedings of the Nutrition Society, 62(2), 403-411.
Bouis, H. E., & Saltzman, A. (2017). Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Global food security, 12, 49-58.
Cakmak, I., & Kutman, U. Á. (2018). Agronomic biofortification of cereals with zinc: a review. European journal of soil science, 69(1), 172-180.
Chandra, A. K., Kumar, A., Bharati, A., Joshi, R., Agrawal, A., & Kumar, S. (2020). Microbial-assisted and genomic-assisted breeding: a two-way approach for the improvement of nutritional quality traits in agricultural crops. Biotech, 10(1), 2.
Chwil, S. (2014). Effects of foliar feeding under different soil fertilization conditions on the yield structure and quality of winter wheat (Triticum aestivum L.). Acta Agrobotanica, 67(4).
Engels, J. M., & Thormann, I. (2020). Main challenges and actions needed to improve conservation and sustainable use of our crop wild relatives. Plants, 9(8), 968.
Gangashetty, P. I., Motagi, B. N., Pavan, R., & Roodagi, M. B. (2016). Breeding crop plants for improved human nutrition through biofortification: progress and prospects. Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits, 35-76.
Gluhovtsev, V. V., Sanina, N. V., & Apalikov, A. A. (2016). Foliar application of nutrients for spring barley cultivation in arid conditions of Middle Volga. Russian agricultural sciences, 42(2), 121-123.
Gulyas, B. Z., Mogeni, B., Jackson, P., Walton, J., & Caton, S. J. (2024). Biofortification as a food-based strategy to improve nutrition in high-income countries: a scoping review. Critical Reviews in Food Science and Nutrition, 1-22.
Hotz, C., Loechl, C., Lubowa, A., Tumwine, J. K., Ndeezi, G., Masawi, A. N., & Gilligan, D. O. (2012). Introduction of β-Carotene–Rich Orange Sweet Potato in Rural Uganda Resulted in Increased Vitamin A Intakes among Children and Women and Improved Vitamin A Status among Children, 3. The Journal of nutrition, 142(10), 1871-1880.
Jones, K. M., & de Brauw, A. (2015). Using agriculture to improve child health: promoting orange sweet potatoes reduces diarrhea. World Development, 74, 15-24.
Lalani, B., Bechoff, A., & Bennett, B. (2019). Which choice of delivery model (s) works best to deliver fortified foods? Nutrients, 11(7), 1594.
Mannar, M. V., & Hurrell, R. F. (2018). Food fortification: past experience, current status, and potential for globalization. In Food fortification in a globalized world (pp. 3-11). Academic Press.
Medina-Lozano, I., & Díaz, A. (2022). Applications of genomic tools in plant breeding: crop biofortification. International Journal of Molecular Sciences, 23(6), 3086.
Mehri, A. (2020). Trace elements in human nutrition (II)–an update. International journal of preventive medicine, 11(1), 2.
Murphy, K. M., Reeves, P. G., & Jones, S. S. (2008). Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars. Euphytica, 163, 381-390.
Narwal, R. P., Malik, R. S., Malhotra, S. K., & Singh, B. R. (2017). Micronutrients and human health. Encyclopedia of Soil Science, 1443-1448.
Newell-McGloughlin, M. (2008). Nutritionally improved agricultural crops. Plant Physiology, 147(3), 939-953.
Rai, D., Chaudhary, C., Khatak, A., & Banyal, S. (2024). A Sustainable Approach to Combat Micronutrient Deficiencies and Ensure Global Food Security through Biofortification. European Journal of Nutrition & Food Safety, 16(4), 15-30.
Rai, K. N., Patil, H. T., Yadav, O. P., Govindaraj, M., Khairwal, I. S., Cherian, B., & Kulkarni, M. P. (2014). Variety Dhanashakti (Pearlmillet). Indian Journal of Genetics and Plant Breeding, 74(3), 405-406.
Rawal, J. S., Gurung, L., Puspa, R. C., Joshi, G. R., & Awasthi, R. (2024). Biofortification: enhancing nutritional value in crops. Tropical Agroecosystems (TAEC), 5(2), 26-33.
Sadeghzadeh, B., Rengel, Z., & Li, C. (2015). Quantitative trait loci (QTL) of seed Zn accumulation in barley population clipper X Sahara. Journal of Plant Nutrition, 38(11), 1672-1684.
Saltzman, A., Birol, E., Oparinde, A., Andersson, M. S., Asare‐Marfo, D., Diressie, M. T., & Zeller, M. (2017). Availability, production, and consumption of crops biofortified by plant breeding: current evidence and future potential. Annals of the New York Academy of Sciences, 1390(1), 104-114.
Sandhu, R., Chaudhary, N., Shams, R., Singh, K., & Pandey, V. K. (2023). A critical review on integrating bio fortification in crops for sustainable agricultural development and nutritional security. Journal of Agriculture and Food Research, 14, 100830.
Shahzad, R., Jamil, S., Ahmad, S., Nisar, A., Khan, S., Amina, Z., & Zhou, W. (2021). Biofortification of cereals and pulses using new breeding techniques: current and future perspectives. Frontiers in nutrition, 8, 721728.
Shelenga, T. V., Kerv, Y. A., Perchuk, I. N., E. Solovyeva, A., Khlestkina, E. K., G. Loskutov, I., & Konarev, A. V. (2021). The potential of small grains crops in enhancing biofortification breeding strategies for human health benefit. Agronomy, 11(7), 1420.
Singh, U., Praharaj, C.S., Chaturvedi, S.K., & Bohra, A. (2016). Biofortification: Introduction, Approaches, Limitations, and Challenges. In: Singh, U., Praharaj, C., Singh, S., Singh, N. (eds), Biofortification of Food Crops (pp. 3-18). Springer, New Delhi.
Stangoulis, J. C., & Knez, M. (2022). Biofortification of major crop plants with iron and zinc-achievements and future directions. Plant and Soil, 474(1), 57-76.
Velu, G., Crespo Herrera, L., Guzman, C., Huerta, J., Payne, T., & Singh, R. P. (2019). Assessing genetic diversity to breed competitive biofortified wheat with enhanced grain Zn and Fe concentrations. Frontiers in Plant Science, 9, 1971.
Virk, P. S., Andersson, M. S., Arcos, J., Govindaraj, M., & Pfeiffer, W. H. (2021). Transition from targeted breeding to mainstreaming of biofortification traits in crop improvement programs. Frontiers in Plant Science, 12, 703990.
Welch, R. M., & Graham, R. D. (2004). Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of experimental botany, 55(396), 353-364.
Wenegieme, T. Y., Elased, D., McMichael, K. E., Rockwood, J., Hasrat, K., Ume, A. C., & Williams, C. R. (2024). Strategies for inducing and validating zinc deficiency and zinc repletion. American Journal of Physiology-Heart and Circulatory Physiology, 326(6), H1396-H1401.