Although soybeans (Glycine max) are a major oilseed crop grown worldwide, abiotic stressors, especially drought, have a major negative influence on their output. The identification and breeding of drought-tolerant soybean varieties should be given priority since there is an evident need to boost agricultural production in this period of shrinking water supplies and rising food demand. However, due to the difficulties in phenotyping and genotyping, breeding for tolerant to drought stress is often disregarded. With a focus on key genes, this chapter thoroughly explores the present level of knowledge regarding the breeding techniques used to increase soybean tolerance against drought stress. This chapter discusses the genetic basis of drought stress tolerance in soybeans, emphasizing the genes and genomic areas that are important for this characteristic. Furthermore, reviewed on the various breeding strategies like genomic selection (GS) and marker-assisted selection (MAS) that are employed in soybean breeding programmes to increase and introgress these key genes. Furthermore, submissions are cutting-edge methods used in drought-tolerant breeding, including transcriptomics, proteomics, CRISPR/Cas9 gene editing, quantitative trait locus mapping and many more others.
CRISPR/Cas, Drought stress tolerance, Soybean, Proteomics, Transcriptomics, QTL mapping
Abbasi, J. (2020). Soy Scaffoldings Poised to Make Cultured Meat More Affordable. JAMA, 323(18), 1764. https://doi.org/10.1001/jama.2020.7000
Abdel-Haleem, H., Carter, T. E., Purcell, L. C., King, C. A., Ries, L. L., Chen, P., Schapaugh, W., Sinclair, T. R., & Boerma, H. R. (2012). Mapping of quantitative trait loci for canopy-wilting trait in soybean (Glycine max L. Merr). Theoretical and Applied Genetics, 125(5), 837–846. https://doi.org/10.1007/s00122-012-1876-9
Abdel-Haleem, H., Lee, G.-J., & Boerma, R. H. (2011). Identification of QTL for increased fibrous roots in soybean. Theoretical and Applied Genetics, 122(5), 935–946. https://doi.org/10.1007/s00122-010-1500-9
Abrol, D. P., & Shankar, U. (2016). Integrated Pest Management. In Breeding Oilseed Crops for Sustainable Production (pp. 523–549). Elsevier. https://doi.org/10.1016/B978-0-12-801309-0.00020-3
Agarwal, D. K., Billore, S. D., Sharma, A. N., Dupare, B. U., & Srivastava, S. K. (2013). Soybean: Introduction, Improvement, and Utilization in India—Problems and Prospects. Agricultural Research, 2(4), 293–300. https://doi.org/10.1007/s40003-013-0088-0 Alam, I., Sharmin, S. A., Kim, K.-H., Yang, J. K., Choi, M. S., & Lee, B.-H. (2010). Proteome analysis of soybean roots subjected to short-term drought stress. Plant and Soil, 333(1–2), 491–505. https://doi.org/10.1007/s11104-010-0365-7
Aleem, M., Riaz, A., Raza, Q., Aleem, M., Aslam, M., Kong, K., Atif, R. M., Kashif, M., Bhat, J. A., & Zhao, T. (2022). Genome-wide characterization and functional analysis of class III peroxidase gene family in soybean reveal regulatory roles of GsPOD40 in drought tolerance. Genomics, 114(1), 45–60. https://doi.org/10.1016/j.ygeno.2021.11.016
Ali, F., Qanmber, G., Li, F., & Wang, Z. (2022). Updated role of ABA in seed maturation, dormancy, and germination. Journal of Advanced Research, 35, 199–214. https://doi.org/10.1016/j.jare.2021.03.011
Altmann, M., Altmann, S., Rodriguez, P. A., Weller, B., Elorduy Vergara, L., Palme, J., Marín-de la Rosa, N., Sauer, M., Wenig, M., Villaécija-Aguilar, J. A., Sales, J., Lin, C.-W., Pandiarajan, R., Young, V., Strobel, A., Gross, L., Carbonnel, S., Kugler, K. G., Garcia-Molina, A., … Falter-Braun, P. (2020). Extensive signal integration by the phytohormone protein network. Nature, 583(7815), 271–276. https://doi.org/10.1038/s41586-020-2460-0
Andre, C., Froehlich, J. E., Moll, M. R., & Benning, C. (2007). A Heteromeric Plastidic Pyruvate Kinase Complex Involved in Seed Oil Biosynthesis in Arabidopsis. The Plant Cell, 19(6), 2006–2022. https://doi.org/10.1105/tpc.106.048629
Arya, H., Singh, M. B., & Bhalla, P. L. (2021). Towards Developing Drought-smart Soybeans. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.750664
Bao, A., Zhang, C., Huang, Y., Chen, H., Zhou, X., & Cao, D. (2020). Genome editing technology and application in soybean improvement. Oil Crop Science, 5(1), 31–40. https://doi.org/10.1016/j.ocsci.2020.03.001
Basal, O., Szabó, A., & Veres, S. (2020). Physiology of soybean as affected by PEG-induced drought stress. Current Plant Biology, 22, 100135. https://doi.org/10.1016/j.cpb.2020.100135
Basu, S., Ramegowda, V., Kumar, A., & Pereira, A. (2016). Plant adaptation to drought stress. F1000Research, 5, 1554. https://doi.org/10.12688/f1000research.7678.1
Bazzer, S. K., & Purcell, L. C. (2020). Identification of quantitative trait loci associated with canopy temperature in soybean. Scientific Reports, 10(1), 17604. https://doi.org/10.1038/s41598-020-74614-8
Bellaloui, N., Bruns, H. A., Abbas, H. K., Mengistu, A., Fisher, D. K., & Reddy, K. N. (2015). Agricultural practices altered soybean seed protein, oil, fatty acids, sugars, and minerals in the Midsouth USA. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00031
Belyshkina, M., Zagoruiko, M., Mironov, D., Bashmakov, I., Rybalkin, D., & Romanovskaya, A. (2023). The Study of Possible Soybean Introduction into New Cultivation Regions Based on the Climate Change Analysis and the Agro-Ecological Testing of the Varieties. Agronomy, 13(2), 610. https://doi.org/10.3390/agronomy13020610
Berchembrock, Y. V., Botelho, F. B. S., & Srivastava, V. (2021). Suppression of ERECTA Signaling Impacts Agronomic Performance of Soybean (Glycine max (L) Merril) in the Greenhouse. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.667825
Bilal, S., Shahzad, R., Imran, M., Jan, R., Kim, K. M., & Lee, I.-J. (2020). Synergistic association of endophytic fungi enhances Glycine max L. resilience to combined abiotic stresses: Heavy metals, high temperature and drought stress. Industrial Crops and Products, 143, 111931. https://doi.org/10.1016/j.indcrop.2019.111931
Blum, A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell & Environment, 40(1), 4–10. https://doi.org/10.1111/pce.12800
Borowska, M., & Prusiński, J. (2021). Effect of soybean cultivars sowing dates on seed yield and its correlation with yield parameters. Plant, Soil and Environment, 67(6), 360–366. https://doi.org/10.17221/73/2021-PSE
Cao, L., Jin, X., Zhang, Y., Zhang, M., & Wang, Y. (2020). Transcriptomic and metabolomic profiling of melatonin treated soybean (Glycine max L.) under drought stress during grain filling period through regulation of secondary metabolite biosynthesis pathways. Plos One, 15(10), e0239701. https://doi.org/10.1371/journal.pone.0239701
Cebrian-Serrano, A., & Davies, B. (2017). CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools. Mammalian Genome, 28(7–8), 247–261. https://doi.org/10.1007/s00335-017-9697-4
Chaudhry, S., & Sidhu, G. P. S. (2022). Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Reports, 41(1), 1–31. https://doi.org/10.1007/s00299-021-02759-5
Chen, H., Kumawat, G., Yan, Y., Fan, B., & Xu, D. (2021d). Mapping and validation of a major QTL for primary root length of soybean seedlings grown in hydroponic conditions. BMC Genomics, 22(1), 132. https://doi.org/10.1186/s12864-021-07445-0
Chen, K., & Gao, C. (2014). Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep, 33, 575–583. https://doi.org/10.1007/s00299-013-1539-6
Chen, K., Su, C., Tang, W., Zhou, Y., Xu, Z., Chen, J., Li, H., Chen, M., & Ma, Y. (2021c). Nuclear transport factor GmNTF2B‐1 enhances soybean drought tolerance by interacting with oxidoreductase GmOXR17 to reduce reactive oxygen species content. The Plant Journal, 107(3), 740–759. https://doi.org/10.1111/tpj.15319
Chen, L. M., Zhou, X. A., Li, W. B., Chang, W., Zhou, R., Wang, C., Sha, A. H., Shan, Z. H., Zhang, C. J., Qiu, D. Z., Yang, Z. L., & Chen, S. L. (2013). Genome-wide transcriptional analysis of two soybean genotypes under dehydration and rehydration conditions. BMC Genomics, 14(1), 687. https://doi.org/10.1186/1471-2164-14-687
Chen, L., Yang, H., Fang, Y., Guo, W., Chen, H., Zhang, X., Dai, W., Chen, S., Hao, Q., Yuan, S., Zhang, C., Huang, Y., Shan, Z., Yang, Z., Qiu, D., Liu, X., Tran, L. P., Zhou, X., & Cao, D. (2021a). Overexpression of GmMYB14 improves high‐density yield and drought tolerance of soybean through regulating plant architecture mediated by the brassinosteroid pathway. Plant Biotechnology Journal, 19(4), 702–716. https://doi.org/10.1111/pbi.13496
Chen, Z., Fang, X., Yuan, X., Zhang, Y., Li, H., Zhou, Y., & Cui, X. (2021b). Overexpression of Transcription Factor GmTGA15 Enhances Drought Tolerance in Transgenic Soybean Hairy Roots and Arabidopsis Plants. Agronomy, 11(1), 170. https://doi.org/10.3390/agronomy11010170
Cohen, I., Zandalinas, S. I., Fritschi, F. B., Sengupta, S., Fichman, Y., Azad, R. K., & Mittler, R. (2021). The impact of water deficit and heat stress combination on the molecular response, physiology, and seed production of soybean. Physiologia Plantarum, 172(1), 41–52. https://doi.org/10.1111/ppl.13269
Coussement, J. R., de Swaef, T., Lootens, P., & Steppe, K. (2020). Turgor-driven plant growth applied in a soybean functional–structural plant model. Annals of Botany, 126(4), 729–744. https://doi.org/10.1093/aob/mcaa076
Danquah, A., de Zelicourt, A., Colcombet, J., & Hirt, H. (2014). The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnology Advances, 32(1), 40–52. https://doi.org/10.1016/j.biotechadv.2013.09.006
Das, A., Eldakak, M., Paudel, B., Kim, D.-W., Hemmati, H., Basu, C., & Rohila, J. S. (2016). Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean. BioMed Research International, 2016, 1–23. https://doi.org/10.1155/2016/6021047
Deshmukh, R., Sonah, H., Patil, G., Chen, W., Prince, S., Mutava, R., Vuong, T., Valliyodan, B., & Nguyen, H. T. (2014). Integrating omic approaches for abiotic stress tolerance in soybean. Frontiers in Plant Science, 5. https://doi.org/10.3389/fpls.2014.00244
Dhungana, S. K., Park, J.-H., Oh, J.-H., Kang, B.-K., Seo, J.-H., Sung, J.-S., Kim, H.-S., Shin, S.-O., Baek, I.-Y., & Jung, C.-S. (2021). Quantitative Trait Locus Mapping for Drought Tolerance in Soybean Recombinant Inbred Line Population. Plants, 10(9), 1816. https://doi.org/10.3390/plants10091816
Dong, S., Jiang, Y., Dong, Y., Wang, L., Wang, W., Ma, Z., Yan, C., Ma, C., & Liu, L. (2019). A study on soybean responses to drought stress and rehydration. Saudi Journal of Biological Sciences, 26(8), 2006–2017. https://doi.org/10.1016/j.sjbs.2019.08.005
Dong, S., Zhou, Q., Yan, C., Song, S., Wang, X., Wu, Z., Wang, X., & Ma, C. (2023). Comparative protein profiling of two soybean genotypes with different stress tolerance reveals major components in drought tolerance. Frontiers in Sustainable Food Systems, 7. https://doi.org/10.3389/fsufs.2023.1200608
Dreoni, I., Matthews, Z., & Schaafsma, M. (2022). The impacts of soy production on multi-dimensional well-being and ecosystem services: A systematic review. Journal of Cleaner Production, 335, 130182. https://doi.org/10.1016/j.jclepro.2021.130182
Du, H., Fang, C., Li, Y., Kong, F., & Liu, B. (2023). Understandings and future challenges in soybean functional genomics and molecular breeding. Journal of Integrative Plant Biology, 65(2), 468–495. https://doi.org/10.1111/jipb.13433
Du, Y., Zhao, Q., Chen, L., Yao, X., & Xie, F. (2020). Effect of Drought Stress at Reproductive Stages on Growth and Nitrogen Metabolism in Soybean. Agronomy, 10(2), 302. https://doi.org/10.3390/agronomy10020302
Du, Y.-T., Zhao, M.-J., Wang, C.-T., Gao, Y., Wang, Y.-X., Liu, Y.-W., Chen, M., Chen, J., Zhou, Y.-B., Xu, Z.-S., & Ma, Y.-Z. (2018). Identification and characterization of GmMYB118 responses to drought and salt stress. BMC Plant Biology, 18(1), 320. https://doi.org/10.1186/s12870-018-1551-7
Dumschott, K., Dechorgnat, J., & Merchant, A. (2019). Water Deficit Elicits a Transcriptional Response of Genes Governing d-pinitol Biosynthesis in Soybean (Glycine max). International Journal of Molecular Sciences, 20(10), 2411. https://doi.org/10.3390/ijms20102411
Dupare, B. U. 2023. Improved Technologies and Recommendations for Maximizing Soybean Productivity. Extension Bulletin No. 18. ICAR-Indian Institute of Soybean Research Publication. Pp: 74.
Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M. Z., Alharby, H., Wu, C., Wang, D., & Huang, J. (2017). Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01147
Fenta, B., Beebe, S., Kunert, K., Burridge, J., Barlow, K., Lynch, J., & Foyer, C. (2014). Field Phenotyping of Soybean Roots for Drought Stress Tolerance. Agronomy, 4(3), 418–435. https://doi.org/10.3390/agronomy4030418
Fritsche-Neto, R., & Borém, A. (2012). Plant Breeding for Abiotic Stress Tolerance (R. Fritsche-Neto & A. Borém, Eds.). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30553-5
Fuganti-Pagliarini, R., Ferreira, L. C., Rodrigues, F. A., Molinari, H. B. C., Marin, S. R. R., Molinari, M. D. C., Marcolino-Gomes, J., Mertz-Henning, L. M., Farias, J. R. B., de Oliveira, M. C. N., Neumaier, N., Kanamori, N., Fujita, Y., Mizoi, J., Nakashima, K., Yamaguchi-Shinozaki, K., & Nepomuceno, A. L. (2017). Characterization of Soybean Genetically Modified for Drought Tolerance in Field Conditions. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.00448
Fuhrmann-Aoyagi, M. B., de Fátima Ruas, C., Barbosa, E. G. G., Braga, P., Moraes, L. A. C., de Oliveira, A. C. B., Kanamori, N., Yamaguchi-Shinozaki, K., Nakashima, K., Nepomuceno, A. L., & Mertz-Henning, L. M. (2021). Constitutive expression of Arabidopsis bZIP transcription factor AREB1 activates cross-signaling responses in soybean under drought and flooding stresses. Journal of Plant Physiology, 257, 153338. https://doi.org/10.1016/j.jplph.2020.153338
Fukao, T., & Xiong, L. (2013). Genetic mechanisms conferring adaptation to submergence and drought in rice: simple or complex? Current Opinion in Plant Biology, 16(2), 196–204. https://doi.org/10.1016/j.pbi.2013.02.003
Gad, M., Chao, H., Li, H., Zhao, W., Lu, G., & Li, M. (2021). QTL Mapping for Seed Germination Response to Drought Stress in Brassica napus. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.629970
Gai, J., Liu, Y., Lv, H., Xing, H., Zhao, T., Yu, D., & Chen, S. (2007). Identification, inheritance and QTL mapping of root traits related to tolerance to rhizo-spheric stresses in soybean (G. max (L.) Merr.). Frontiers of Agriculture in China, 1(2), 119–128. https://doi.org/10.1007/s11703-007-0022-y
Gao, C. (2018). The future of CRISPR technologies in agriculture. Nature Reviews Molecular Cell Biology, 19(5), 275–276. https://doi.org/10.1038/nrm.2018.2
Gao, C. (2021). Genome engineering for crop improvement and future agriculture. Cell, 184(6), 1621–1635. https://doi.org/10.1016/j.cell.2021.01.005
Gao, F., Xiong, A., Peng, R., Jin, X., Xu, J., Zhu, B., Chen, J., & Yao, Q. (2010). OsNAC52, a rice NAC transcription factor, potentially responds to ABA and confers drought tolerance in transgenic plants. Plant Cell, Tissue and Organ Culture (PCTOC), 100(3), 255–262. https://doi.org/10.1007/s11240-009-9640-9
Gao, S.-Q., Chen, M., Xu, Z.-S., Zhao, C.-P., Li, L., Xu, H., Tang, Y., Zhao, X., & Ma, Y.-Z. (2011). The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Molecular Biology, 75(6), 537–553. https://doi.org/10.1007/s11103-011-9738-4
Giordani, W., Gonçalves, L. S. A., Moraes, L. A. C., Ferreira, L. C., Neumaier, N., Farias, J. R. B., ... & Mertz-Henning, L. M. (2019). Identification of agronomical and morphological traits contributing to drought stress tolerance in soybean. Australian Journal of Crop Science, 13(1), 35-44. https://search.informit.org/doi/10.3316/informit.337951904526560
Guimarães-Dias, F., Neves-Borges, A. C., Viana, A. A. B., Mesquita, R. O., Romano, E., Grossi-de-Sá, M. de F., Nepomuceno, A. L., Loureiro, M. E., & Alves-Ferreira, M. (2012). Expression analysis in response to drought stress in soybean: shedding light on the regulation of metabolic pathway genes. Genetics and Molecular Biology, 35(1 suppl 1), 222–232. https://doi.org/10.1590/S1415-47572012000200004
Gupta, A., Rico-Medina, A., & Caño-Delgado, A. I. (2020). The physiology of plant responses to drought. Science, 368(6488), 266–269. https://doi.org/10.1126/science.aaz7614
Ha, S., Vankova, R., Yamaguchi-Shinozaki, K., Shinozaki, K., & Tran, L.-S. P. (2012). Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends in Plant Science, 17(3), 172–179. https://doi.org/10.1016/j.tplants.2011.12.005
Hossain, Z., Khatoon, A., & Komatsu, S. (2013). Soybean Proteomics for Unraveling Abiotic Stress Response Mechanism. Journal of Proteome Research, 12(11), 4670–4684. https://doi.org/10.1021/pr400604b
https://iisrindore.icar.gov.in/statistics.html
Hu, Y., Han, X., Yang, M., Zhang, M., Pan, J., & Yu, D. (2019). The Transcription Factor Inducer of CBF Expression1 Interacts with Abscisic Acid Insensitive and DELLA Proteins to Fine-Tune Abscisic Acid Signaling during Seed Germination in Arabidopsis. The Plant Cell, 31(7), 1520–1538. https://doi.org/10.1105/tpc.18.00825
Hussain, R. M., Ali, M., Feng, X., & Li, X. (2017). The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars. BMC Plant Biology, 17(1), 55. https://doi.org/10.1186/s12870-017-1001-y
Hwang, S., King, C. A., Ray, J. D., Cregan, P. B., Chen, P., Carter, T. E., Li, Z., Abdel-Haleem, H., Matson, K. W., Schapaugh, W., & Purcell, L. C. (2015). Confirmation of delayed canopy wilting QTLs from multiple soybean mapping populations. Theoretical and Applied Genetics, 128(10), 2047–2065. https://doi.org/10.1007/s00122-015-2566-1
Hymowitz, T. (2016). Speciation and Cytogenetics (pp. 97–136). https://doi.org/10.2134/agronmonogr16.3ed.c4
Igiehon, N. O., Babalola, O. O., Cheseto, X., & Torto, B. (2021). Effects of rhizobia and arbuscular mycorrhizal fungi on yield, size distribution and fatty acid of soybean seeds grown under drought stress. Microbiological Research, 242, 126640. https://doi.org/10.1016/j.micres.2020.126640
Jha, R., Tiwari, M., Devi, B., Jha, U. C., Tripathi, S., & Singh, P. (2023). Genomic Approaches for Resistance Against Fungal Diseases in Soybean. In Diseases in Legume Crops (pp. 301–328). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-3358-7_13
Jia, Q., Zhou, M., Xiong, Y., Wang, J., Xu, D., Zhang, H., Liu, X., Zhang, W., Wang, Q., Sun, X., & Chen, H. (2024). Development of KASP markers assisted with soybean drought tolerance in the germination stage based on GWAS. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1352379
Jiang, G.-L., Rajcan, I., Zhang, Y.-M., Han, T., & Mian, R. (2023). Editorial: Soybean molecular breeding and genetics. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1157632
Jiang, W., Liu, Y., Zhang, C., Pan, L., Wang, W., Zhao, C., Zhao, T., & Li, Y. (2024). Identification of major QTLs for drought tolerance in soybean, together with a novel candidate gene, GmUAA6. Journal of Experimental Botany, 75(7), 1852–1871. https://doi.org/10.1093/jxb/erad483
Jianing, G., Zhiming, X., Rasheed, A., Tiancong, W., Qian, Z., Zhuo, Z., Zhuo, Z., Gardiner, J. J., Ahmad, I., Xiaoxue, W., Jian, W., & Yuhong, G. (2022). CRISPR/Cas9 applications for improvement of soybeans, current scenarios, and future perspectives. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(2), 12678. https://doi.org/10.15835/nbha50212678
Jumrani, K., & Bhatia, V. S. (2019). Identification of drought tolerant genotypes using physiological traits in soybean. Physiology and Molecular Biology of Plants, 25(3), 697–711. https://doi.org/10.1007/s12298-019-00665-5
Kalra, A., Goel, S., & Elias, A. A. (2024). Understanding role of roots in plant response to drought: Way forward to climate‐resilient crops. The Plant Genome, 17(1). https://doi.org/10.1002/tpg2.20395
Kang, S.-M., Radhakrishnan, R., Khan, A. L., Kim, M.-J., Park, J.-M., Kim, B.-R., Shin, D.-H., & Lee, I.-J. (2014). Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiology and Biochemistry, 84, 115–124. https://doi.org/10.1016/j.plaphy.2014.09.001
Katam, R., Shokri, S., Murthy, N., Singh, S. K., Suravajhala, P., Khan, M. N., Bahmani, M., Sakata, K., & Reddy, K. R. (2020). Proteomics, physiological, and biochemical analysis of cross tolerance mechanisms in response to heat and water stresses in soybean. Plos One, 15(6), e0233905. https://doi.org/10.1371/journal.pone.0233905
Keunen, E., Peshev, D., Vangronsveld, J., van den Ende, W., & Cuypers, A. (2013). Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant, Cell & Environment, 36(7), 1242–1255. https://doi.org/10.1111/pce.12061
Khan, M. A., Tong, F., Wang, W., He, J., Zhao, T., & Gai, J. (2018). Analysis of QTL–allele system conferring drought tolerance at seedling stage in a nested association mapping population of soybean [Glycine max (L.) Merr.] using a novel GWAS procedure. Planta, 248(4), 947–962. https://doi.org/10.1007/s00425-018-2952-4
Khan, M. A., Tong, F., Wang, W., He, J., Zhao, T., & Gai, J. (2019). Using the RTM-GWAS procedure to detect the drought tolerance QTL-allele system at the seedling stage under sand culture in a half-sib population of soybean [Glycine max (L.) Merr.]. Canadian Journal of Plant Science, 99(6), 801–814. https://doi.org/10.1139/cjps-2018-0309
Kieber, J. J., & Schaller, G. E. (2014). Cytokinins. The Arabidopsis Book, 12, e0168. https://doi.org/10.1199/tab.0168
Kijowska-Oberc, J., Staszak, A. M., Kamiński, J., & Ratajczak, E. (2020). Adaptation of Forest Trees to Rapidly Changing Climate. Forests, 11(2), 123. https://doi.org/10.3390/f11020123
Kim, S. T., & Sang, M. K. (2023). Enhancement of osmotic stress tolerance in soybean seed germination by bacterial bioactive extracts. PLOS ONE, 18(10), e0292855. https://doi.org/10.1371/journal.pone.0292855
Kim, T.-H. (2014). Mechanism of ABA signal transduction: Agricultural highlights for improving drought tolerance. Journal of Plant Biology, 57(1), 1–8. https://doi.org/10.1007/s12374-014-0901-8
Ku, Y.-S., Au-Yeung, W.-K., Yung, Y.-L., Li, M.-W., Wen, C.-Q., Liu, X., & Lam, H.-M. (2013a). Drought Stress and Tolerance in Soybean. In A Comprehensive Survey of International Soybean Research - Genetics, Physiology, Agronomy and Nitrogen Relationships. InTech. https://doi.org/10.5772/52945
Ku, Y.-S., Au-Yeung, W.-K., Yung, Y.-L., Li, M.-W., Wen, C.-Q., Liu, X., & Lam, H.-M. (2013b). Drought Stress and Tolerance in Soybean. In A Comprehensive Survey of International Soybean Research - Genetics, Physiology, Agronomy and Nitrogen Relationships. InTech. https://doi.org/10.5772/52945
Kumar, P., Chatli, M. K., Mehta, N., Singh, P., Malav, O. P., & Verma, A. K. (2017). Meat analogues: Health promising sustainable meat substitutes. Critical Reviews in Food Science and Nutrition, 57(5), 923–932. https://doi.org/10.1080/10408398.2014.939739
Kunert, K., & Vorster, B. J. (2020). In search for drought-tolerant soybean: is the slow-wilting phenotype more than just a curiosity? Journal of Experimental Botany, 71(2), 457–460. https://doi.org/10.1093/jxb/erz235
Lamaoui, M., Jemo, M., Datla, R., & Bekkaoui, F. (2018). Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Frontiers in Chemistry, 6. https://doi.org/10.3389/fchem.2018.00026
Lamichhane, J. R., Constantin, J., Schoving, C., Maury, P., Debaeke, P., Aubertot, J.-N., & Dürr, C. (2020). Analysis of soybean germination, emergence, and prediction of a possible northward establishment of the crop under climate change. European Journal of Agronomy, 113, 125972. https://doi.org/10.1016/j.eja.2019.125972
Le, D. T., Nishiyama, R., Watanabe, Y., Tanaka, M., Seki, M., Ham, L. H., Yamaguchi-Shinozaki, K., Shinozaki, K., & Tran, L.-S. P. (2012). Differential Gene Expression in Soybean Leaf Tissues at Late Developmental Stages under Drought Stress Revealed by Genome-Wide Transcriptome Analysis. PLoS ONE, 7(11), e49522. https://doi.org/10.1371/journal.pone.0049522
Lee, G.-J., Lee, S., Carter, T. E., Shannon, G., & Boerma, H. R. (2021). Identification of Soybean Yield QTL in Irrigated and Rain-Fed Environments. Agronomy, 11(11), 2207. https://doi.org/10.3390/agronomy11112207
Leng, Z.-X., Liu, Y., Chen, Z.-Y., Guo, J., Chen, J., Zhou, Y.-B., Chen, M., Ma, Y.-Z., Xu, Z.-S., & Cui, X.-Y. (2021). Genome-Wide Analysis of the DUF4228 Family in Soybean and Functional Identification of GmDUF4228–70 in Response to Drought and Salt Stresses. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.628299
Li, M., Li, H., Sun, A., Wang, L., Ren, C., Liu, J., & Gao, X. (2022). Transcriptome analysis reveals key drought-stress-responsive genes in soybean. Frontiers in Genetics, 13. https://doi.org/10.3389/fgene.2022.1060529
Li, W. F., Shao, G., & Lam, H. (2008). Ectopic expression of GmPAP3 alleviates oxidative damage caused by salinity and osmotic stresses. New Phytologist, 178(1), 80–91. https://doi.org/10.1111/j.1469-8137.2007.02356.x
Li, X., Guo, Z., Lv, Y., Cen, X., Ding, X., Wu, H., Li, X., Huang, J., & Xiong, L. (2017). Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study. PLOS Genetics, 13(7), e1006889. https://doi.org/10.1371/journal.pgen.1006889
Li, Y., Zhang, J., Zhang, J., Hao, L., Hua, J., Duan, L., Zhang, M., & Li, Z. (2013). Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions. Plant Biotechnology Journal, 11(6), 747–758. https://doi.org/10.1111/pbi.12066
Li, Z., Mei, S., Mei, Z., Liu, X., Fu, T., Zhou, G., & Tu, J. (2014). Mapping of QTL associated with waterlogging tolerance and drought resistance during the seedling stage in oilseed rape (Brassica napus). Euphytica, 197(3), 341–353. https://doi.org/10.1007/s10681-014-1070-z
Liao, Y., Zhang, J., Chen, S., & Zhang, W. (2008). Role of Soybean GmbZIP132 under Abscisic Acid and Salt Stresses. Journal of Integrative Plant Biology, 50(2), 221–230. https://doi.org/10.1111/j.1744-7909.2007.00593.x
Lima, L. L., Balbi, B. P., Mesquita, R. O., da Silva, J. C. F., Coutinho, F. S., Carmo, F. M. S., & Ramos, H. J. O. (2019). Proteomic and Metabolomic Analysis of a Drought Tolerant Soybean Cultivar from Brazilian Savanna. Crop Breeding, Genetics and Genomics. https://doi.org/10.20900/cbgg20190022
Liu, S., Liu, J., Zhang, Y., Jiang, Y., Hu, S., Shi, A., Cong, Q., Guan, S., Qu, J., & Dan, Y. (2022). Cloning of the Soybean sHSP26 Gene and Analysis of Its Drought Resistance. Phyton, 91(7), 1465–1482. https://doi.org/10.32604/phyton.2022.018836
Liu, W., Wang, Y., Zhang, Y., Li, W., Wang, C., Xu, R., Dai, H., & Zhang, L. (2024). Characterization of the pyruvate kinase gene family in soybean and identification of a putative salt responsive gene GmPK21. BMC Genomics, 25(1), 88. https://doi.org/10.1186/s12864-023-09929-7
Liu, Z., Li, H., Gou, Z., Zhang, Y., Wang, X., Ren, H., Wen, Z., Kang, B.-K., Li, Y., Yu, L., Gao, H., Wang, D., Qi, X., & Qiu, L. (2020). Genome-wide association study of soybean seed germination under drought stress. Molecular Genetics and Genomics, 295(3), 661–673. https://doi.org/10.1007/s00438-020-01646-0
Lu, Q., Zhao, L., Li, D., Hao, D., Zhan, Y., & Li, W. (2014). A GmRAV Ortholog Is Involved in Photoperiod and Sucrose Control of Flowering Time in Soybean. PLoS ONE, 9(2), e89145. https://doi.org/10.1371/journal.pone.0089145
Luan, X., Bommarco, R., Scaini, A., & Vico, G. (2021). Combined heat and drought suppress rainfed maize and soybean yields and modify irrigation benefits in the USA. Environmental Research Letters, 16(6), 064023. https://doi.org/10.1088/1748-9326/abfc76
Luo, X., Bai, X., Sun, X., Zhu, D., Liu, B., Ji, W., Cai, H., Cao, L., Wu, J., Hu, M., Liu, X., Tang, L., & Zhu, Y. (2013). Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signaling. Journal of Experimental Botany, 64(8), 2155–2169. https://doi.org/10.1093/jxb/ert073
Luo, X., Bai, X., Zhu, D., Li, Y., Ji, W., Cai, H., Wu, J., Liu, B., & Zhu, Y. (2012). GsZFP1, a new Cys2/His2-type zinc-finger protein, is a positive regulator of plant tolerance to cold and drought stress. Planta, 235(6), 1141–1155. https://doi.org/10.1007/s00425-011-1563-0
Ma, X.-J., Fu, J.-D., Tang, Y.-M., Yu, T.-F., Yin, Z.-G., Chen, J., Zhou, Y.-B., Chen, M., Xu, Z.-S., & Ma, Y.-Z. (2020). GmNFYA13 Improves Salt and Drought Tolerance in Transgenic Soybean Plants. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.587244
Ma, Y., Cao, J., He, J., Chen, Q., Li, X., & Yang, Y. (2018). Molecular Mechanism for the Regulation of ABA Homeostasis during Plant Development and Stress Responses. International Journal of Molecular Sciences, 19(11), 3643. https://doi.org/10.3390/ijms19113643
Mak, M., Babla, M., Xu, S.-C., O’Carrigan, A., Liu, X.-H., Gong, Y.-M., Holford, P., & Chen, Z.-H. (2014). Leaf mesophyll K+, H+ and Ca2+ fluxes are involved in drought-induced decrease in photosynthesis and stomatal closure in soybean. Environmental and Experimental Botany, 98, 1–12. https://doi.org/10.1016/j.envexpbot.2013.10.003
Malcheska, F., Ahmad, A., Batool, S., Müller, H. M., Ludwig-Müller, J., Kreuzwieser, J., Randewig, D., Hänsch, R., Mendel, R. R., Hell, R., Wirtz, M., Geiger, D., Ache, P., Hedrich, R., Herschbach, C., & Rennenberg, H. (2017). Drought-Enhanced Xylem Sap Sulfate Closes Stomata by Affecting ALMT12 and Guard Cell ABA Synthesis. Plant Physiology, 174(2), 798–814. https://doi.org/10.1104/pp.16.01784
Maleki, A., Naderi, A., Naseri, R., Fathi, A., Bahamin, S., & Maleki, R. (2013). Physiological performance of soybean cultivars under drought stress. Bulletin of Environment, Pharmacology and Life Sciences, 2(6), 38-44.
Malinowska, M., Donnison, I., & Robson, P. (2020). Morphological and Physiological Traits that Explain Yield Response to Drought Stress in Miscanthus. Agronomy, 10(8), 1194. https://doi.org/10.3390/agronomy10081194
Mandić, V., Krnjaja, V., Tomić, Z., Bijelić, Z., Simić, A., Đorđević, S., ... & Gogić, M. (2015). Effect of water stress on soybean production. In Proceedings of the 4th International Congress New Perspectives and Challenges of Sustainable Livestock Production October 7–9, 2015 (pp. 405-414). Belgrade: Institute for Animal Husbandry. http://r.istocar.bg.ac.rs/handle/123456789/602
Marcolino-Gomes, J., Rodrigues, F. A., Fuganti-Pagliarini, R., Bendix, C., Nakayama, T. J., Celaya, B., Molinari, H. B. C., de Oliveira, M. C. N., Harmon, F. G., & Nepomuceno, A. (2014). Diurnal Oscillations of Soybean Circadian Clock and Drought Responsive Genes. PLoS ONE, 9(1), e86402. https://doi.org/10.1371/journal.pone.0086402
Markulj Kulundžić, A., Josipović, A., Matoša Kočar, M., Viljevac Vuletić, M., Antunović Dunić, J., Varga, I., Cesar, V., Sudarić, A., & Lepeduš, H. (2022). Physiological insights on soybean response to drought. Agricultural Water Management, 268, 107620. https://doi.org/10.1016/j.agwat.2022.107620
Matías-Hernández, L., Aguilar-Jaramillo, A. E., Marín-González, E., Suárez-López, P., & Pelaz, S. (2014). RAV genes: regulation of floral induction and beyond. Annals of Botany, 114(7), 1459–1470. https://doi.org/10.1093/aob/mcu069
McMillan, M., Kallenbach, C. M., & Whalen, J. K. (2022). Soybean abiotic stress tolerance is improved by beneficial rhizobacteria in biosolids-amended soil. Applied Soil Ecology, 174, 104425. https://doi.org/10.1016/j.apsoil.2022.104425
Mir, R. R., Zaman-Allah, M., Sreenivasulu, N., Trethowan, R., & Varshney, R. K. (2012). Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theoretical and Applied Genetics, 125(4), 625–645. https://doi.org/10.1007/s00122-012-1904-9
Mir, R. R., Zaman-Allah, M., Sreenivasulu, N., Trethowan, R., & Varshney, R. K. (2012). Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theoretical and Applied Genetics, 125(4), 625–645. https://doi.org/10.1007/s00122-012-1904-9
Mishra N, Tripathi MK, Tiwari S, Tripathi N and Sikarwar, RS. (2022d). Evaluation of qualitative trait based variability among soybean genotypes. The Pharma Innovation, 11(9), 1115-1121.
Mishra N, Tripathi MK, Tiwari S, Tripathi N, Gupta N, Sharma A, Solanki RS. (2021f). Evaluation of diversity among soybean genotypes via yield attributing traits and SSR molecular markers. Current Journal of Applied Science & Technology, 40(21),9-24. DOI: https://doi org/10 20546/ijcmas 2021 1002 193.
Mishra N, Tripathi MK, Tiwari S, Tripathi N, Gupta N, Sharma A. (2021c). Morphological and physiological performance of Indian soybean [Glycine max (L.) Merrill] genotypes in respect to drought. Legume Res. Int. J. LR-4550.
Mishra N, Tripathi MK, Tripathi N, Tiwari S, Gupta N, Sharma A, Shrivastav MK. (2021d). Changes in biochemical and antioxidant enzymes activities play significant role in drought tolerance in soybean. Int. J. Agric. Technol,17, 1425–1446.
Mishra N, Tripathi MK, Tripathi N, Tiwari S, Gupta N, Sharma A. (2021e). Validation of drought tolerance gene-linked microsatellite markers and their efficiency for diversity assessment in a set of soybean genotypes. Curr. J. Appl. Sci. Technol, 40, 48–57.
Mishra, N., Tripathi, M. K., Tiwari, S., Tripathi, N., & Trivedi, H. K. (2022b). Morphological and molecular screening of soybean genotypes against yellow mosaic virus disease. Legume Research-An International Journal, 45(10), 1309-1316.
Mishra, N., Tripathi, M. K., Tiwari, S., Tripathi, N., Gupta, N., Sharma, A., Solanki, R. S., & Tiwari, S. (2022a). Characterization of Soybean Genotypes on the Basis of Yield Attributing Traits and SSR Molecular Markers. In Innovations in Science and Technology Vol. 3 (pp. 87–106). Book Publisher International (a part of SCIENCE DOMAIN International). https://doi.org/10.9734/bpi/ist/v3/2471C
Mishra, N., Tripathi, M. K., Tiwari, S., Tripathi, N., Sapre, S., Ahuja, A., & Tiwari, S. (2021a). Cell Suspension Culture and In Vitro Screening for Drought Tolerance in Soybean Using Poly-Ethylene Glycol. Plants, 10(3), 517. https://doi.org/10.3390/plants10030517
Mishra, N., Tripathi, M. K., Tripathi, N., Tiwari, S., Gupta, N., & Sharma, A. (2022c). Screening of Soybean Genotypes against Drought on the Basis of Gene-Linked Microsatellite Markers. In Innovations in Science and Technology Vol. 3 (pp. 49–61). Book Publisher International (a part of SCIENCEDOMAIN International). https://doi.org/10.9734/bpi/ist/v3/2454C
Mishra, N., Tripathi, M. K., Tripathi, N., Tiwari, S., Gupta, N., Sharma, A., & Shrivastav, M. K. (2021b). Role of Biochemical and Antioxidant Enzymes Activities in Drought Tolerance in Soybean: A Recent Study. In Current Topics in Agricultural Sciences Vol. 3 (pp. 102–119). Book Publisher International (a part of SCIENCEDOMAIN International). https://doi.org/10.9734/bpi/ctas/v3/2117C
Mishra, R., Tripathi, M. K., Sikarwar, R. S., Singh, Y., & Tripathi, N. (2024). Soybean (Glycine max L. Merrill): A Multipurpose Legume Shaping Our World. Plant Cell Biotechnology and Molecular Biology, 25(3–4), 17–37. https://doi.org/10.56557/pcbmb/2024/v25i3-48643
Mohammadi, P. P., Moieni, A., Hiraga, S., & Komatsu, S. (2012). Organ-specific proteomic analysis of drought-stressed soybean seedlings. Journal of Proteomics, 75(6), 1906–1923. https://doi.org/10.1016/j.jprot.2011.12.041
Mohd Ikmal, A., Nurasyikin, Z., Tuan Nur Aqlili Riana, T. A., Puteri Dinie Ellina, Z., Wickneswari, R., & Noraziyah, A. A. S. (2019). Drought Yield QTL (qDTY) with Consistent Effects on Morphological and Agronomical Traits of Two Populations of New Rice (Oryza sativa) Lines. Plants, 8(6), 186. https://doi.org/10.3390/plants8060186
Mok, M. C. (2019). Cytokinins and plant development—an overview. Cytokinins, 155-166.
Molinari, M. D. C., Fuganti-Pagliarini, R., de Amorim Barbosa, D., Barbosa, E. G. G., Kafer, J. M., Marin, D. R., Marin, S. R. R., Mertz-Henning, L. M., & Nepomuceno, A. L. (2023). Comparative ABA-Responsive Transcriptome in Soybean Cultivars Submitted to Different Levels of Drought. Plant Molecular Biology Reporter, 41(2), 260–276. https://doi.org/10.1007/s11105-022-01364-4
Munemasa, S., Hauser, F., Park, J., Waadt, R., Brandt, B., & Schroeder, J. I. (2015). Mechanisms of abscisic acid-mediated control of stomatal aperture. Current Opinion in Plant Biology, 28, 154–162. https://doi.org/10.1016/j.pbi.2015.10.010
Mutava, R. N., Prince, S. J. K., Syed, N. H., Song, L., Valliyodan, B., Chen, W., & Nguyen, H. T. (2015). Understanding abiotic stress tolerance mechanisms in soybean: A comparative evaluation of soybean response to drought and flooding stress. Plant Physiology and Biochemistry, 86, 109–120. https://doi.org/10.1016/j.plaphy.2014.11.010
Nakagawa, A. C. S., Itoyama, H., Ariyoshi, Y., Ario, N., Tomita, Y., Kondo, Y., Iwaya-Inoue, M., & Ishibashi, Y. (2018). Drought stress during soybean seed filling affects storage compounds through regulation of lipid and protein metabolism. Acta Physiologiae Plantarum, 40(6), 111. https://doi.org/10.1007/s11738-018-2683-y
Nguyen, Q. H., Vu, L. T. K., Nguyen, L. T. N., Pham, N. T. T., Nguyen, Y. T. H., Le, S. van, & Chu, M. H. (2019). Overexpression of the GmDREB6 gene enhances proline accumulation and salt tolerance in genetically modified soybean plants. Scientific Reports, 9(1), 19663. https://doi.org/10.1038/s41598-019-55895-0
Niemann, M. C. E., Weber, H., Hluska, T., Leonte, G., Anderson, S. M., Novák, O., Senes, A., & Werner, T. (2018). The Cytokinin Oxidase/Dehydrogenase CKX1 Is a Membrane-Bound Protein Requiring Homooligomerization in the Endoplasmic Reticulum for Its Cellular Activity. Plant Physiology, 176(3), 2024–2039. https://doi.org/10.1104/pp.17.00925
Ning, W., Zhai, H., Yu, J., Liang, S., Yang, X., Xing, X., Huo, J., Pang, T., Yang, Y., & Bai, X. (2017). Overexpression of Glycine soja WRKY20 enhances drought tolerance and improves plant yields under drought stress in transgenic soybean. Molecular Breeding, 37(2), 19. https://doi.org/10.1007/s11032-016-0614-4
Nouri, M., & Komatsu, S. (2010). Comparative analysis of soybean plasma membrane proteins under osmotic stress using gel‐based and LC MS/MS‐based proteomics approaches. Proteomics, 10(10), 1930–1945. https://doi.org/10.1002/pmic.200900632
O’Brien, J. A., & Benková, E. (2013). Cytokinin cross-talking during biotic and abiotic stress responses. Frontiers in Plant Science, 4. https://doi.org/10.3389/fpls.2013.00451
Ouyang, W., Chen, L., Ma, J., Liu, X., Chen, H., Yang, H., Guo, W., Shan, Z., Yang, Z., Chen, S., Zhan, Y., Zhang, H., Cao, D., & Zhou, X. (2022). Identification of Quantitative Trait Locus and Candidate Genes for Drought Tolerance in a Soybean Recombinant Inbred Line Population. International Journal of Molecular Sciences, 23(18), 10828. https://doi.org/10.3390/ijms231810828
Pagliarini, R. F., Marinho, J. P., Molinari, M. D. C., Marcolino-Gomes, J., Caranhoto, A. L. H., Marin, S. R. R., Oliveira, M. C. N., Foloni, J. S. S., Melo, C. L. P., Kidokoro, S., Mizoi, J., Kanamori, N., Yamaguchi-Shinozaki, K., Nakashima, K., Nepomuceno, A. L., & Mertz-Henning, L. M. (2021). Overexpression of full-length and partial DREB2A enhances soybean drought tolerance. Agronomy Science and Biotechnology, 8, 1–21. https://doi.org/10.33158/ASB.r141.v8.2022
Pirasteh-Anosheh, H., Emam, Y., & Pessarakli, M. (2013). Changes in Endogenous Hormonal Status in Corn (Zea mays) Hybrids under Drought Stress. Journal of Plant Nutrition, 36(11), 1695–1707. https://doi.org/10.1080/01904167.2013.810246
Poku, S. A., Chukwurah, P. N., Aung, H. H., & Nakamura, I. (2021). Knockdown of GmSOG1Compromises Drought Tolerance in Transgenic Soybean Lines. American Journal of Plant Sciences, 12(01), 18–36. https://doi.org/10.4236/ajps.2021.121003
Poudel, S., Vennam, R. R., Shrestha, A., Reddy, K. R., Wijewardane, N. K., Reddy, K. N., & Bheemanahalli, R. (2023). Resilience of soybean cultivars to drought stress during flowering and early-seed setting stages. Scientific Reports, 13(1), 1277. https://doi.org/10.1038/s41598-023-28354-0
Pratap, A., Gupta, S. K., Kumar, J., & Solanki, R. K. (2012). Soybean. In Technological Innovations in Major World Oil Crops, Volume 1 (pp. 293–321). Springer New York. https://doi.org/10.1007/978-1-4614-0356-2_12
Qin, J., Gu, F., Liu, D., Yin, C., Zhao, S., Chen, H., Zhang, J., Yang, C., Zhan, X., & Zhang, M. (2013). Proteomic analysis of elite soybean Jidou17 and its parents using iTRAQ-based quantitative approaches. Proteome Science, 11(1), 12. https://doi.org/10.1186/1477-5956-11-12
Raboanatahiry, N., Chao, H., Guo, L., Gan, J., Xiang, J., Yan, M., Zhang, L., Yu, L., & Li, M. (2017). Synteny analysis of genes and distribution of loci controlling oil content and fatty acid profile based on QTL alignment map in Brassica napus. BMC Genomics, 18(1), 776. https://doi.org/10.1186/s12864-017-4176-6
Rasheed, A., Mahmood, A., Maqbool, R., Albaqami, M., Sher, A., Sattar, A., Bakhsh, G., Nawaz, M., Hassan, M. U., Al-Yahyai, R., Aamer, M., Li, H., & Wu, Z. (2022). Key insights to develop drought-resilient soybean: A review. Journal of King Saud University - Science, 34(5), 102089. https://doi.org/10.1016/j.jksus.2022.102089
Redondo-Gómez, S. (2013). Abiotic and Biotic Stress Tolerance in Plants. In Molecular Stress Physiology of Plants (pp. 1–20). Springer India. https://doi.org/10.1007/978-81-322-0807-5_1
Ren, H., Han, J., Wang, X., Zhang, B., Yu, L., Gao, H., Hong, H., Sun, R., Tian, Y., Qi, X., Liu, Z., Wu, X., & Qiu, L.-J. (2020). QTL mapping of drought tolerance traits in soybean with SLAF sequencing. The Crop Journal, 8(6), 977–989. https://doi.org/10.1016/j.cj.2020.04.004
Romero-Perez, P. S., Dorone, Y., Flores, E., Sukenik, S., & Boeynaems, S. (2023). When Phased without Water: Biophysics of Cellular Desiccation, from Biomolecules to Condensates. Chemical Reviews, 123(14), 9010–9035. https://doi.org/10.1021/acs.chemrev.2c00659
Rouphael, Y., & Colla, G. (2020). Editorial: Biostimulants in Agriculture. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00040
Sakata, Y., Komatsu, K., & Takezawa, D. (2014). ABA as a Universal Plant Hormone (pp. 57–96). https://doi.org/10.1007/978-3-642-38797-5_2
Sami, A., Xue, Z., Tazein, S., Arshad, A., He Zhu, Z., Ping Chen, Y., Hong, Y., Tian Zhu, X., & Jin Zhou, K. (2021). CRISPR–Cas9-based genetic engineering for crop improvement under drought stress. Bioengineered, 12(1), 5814–5829. https://doi.org/10.1080/21655979.2021.1969831
Satpute, G. K., Ratnaparkhe, M. B., Chandra, S., Kamble, V. G., Kavishwar, R., Singh, A. K., Gupta, S., Devdas, R., Arya, M., Singh, M., Sharma, M. P., Kumawat, G., Shivakumar, M., Nataraj, V., Kuchlan, M. K., Rajesh, V., Srivastava, M. K., Chitikineni, A., Varshney, R. K., & Nguyen, H. T. (2020). Breeding and Molecular Approaches for Evolving Drought-Tolerant Soybeans. In Plant Stress Biology (pp. 83–130). Springer Singapore. https://doi.org/10.1007/978-981-15-9380-2_4
Sehgal, A., Sita, K., Siddique, K. H. M., Kumar, R., Bhogireddy, S., Varshney, R. K., HanumanthaRao, B., Nair, R. M., Prasad, P. V. V., & Nayyar, H. (2018). Drought or/and Heat-Stress Effects on Seed Filling in Food Crops: Impacts on Functional Biochemistry, Seed Yields, and Nutritional Quality. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.01705
Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants, 10(2), 259. https://doi.org/10.3390/plants10020259
Severin, A. J., Woody, J. L., Bolon, Y.-T., Joseph, B., Diers, B. W., Farmer, A. D., Muehlbauer, G. J., Nelson, R. T., Grant, D., Specht, J. E., Graham, M. A., Cannon, S. B., May, G. D., Vance, C. P., & Shoemaker, R. C. (2010). RNA-Seq Atlas of Glycine max: A guide to the soybean transcriptome. BMC Plant Biology, 10(1), 160. https://doi.org/10.1186/1471-2229-10-160
Shaffique, S., Hussain, S., Kang, S.-M., Imran, M., Injamum-Ul-Hoque, Md., Khan, M. A., & Lee, I.-J. (2023). Phytohormonal modulation of the drought stress in soybean: outlook, research progress, and cross-talk. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1237295
Shaheen, T., Rahman, M.-, Shahid Riaz, M., Zafar, Y., & Rahman, M.-. (2016). Soybean production and drought stress. In Abiotic and Biotic Stresses in Soybean Production (pp. 177–196). Elsevier. https://doi.org/10.1016/B978-0-12-801536-0.00008-6
Shahriari, A. G., Soltani, Z., Tahmasebi, A., & Poczai, P. (2022). Integrative System Biology Analysis of Transcriptomic Responses to Drought Stress in Soybean (Glycine max L.). Genes, 13(10), 1732. https://doi.org/10.3390/genes13101732
Sharma A, Tripathi MK, Tiwari S, Gupta N, Tripathi N, Mishra N. (2021). Evaluation of soybean (Glycine max L.) genotypes on the basis of biochemical contents and anti-oxidant enzyme activities. Legume Res 44, LR-467.
Sharma, A., Mishra, N., Tripathi, N., Nehra, S., Singh, J., Tiwari, S., & Tripathi, M. K. (2023). Qualitative Trait Based Variability Among Soybean Genotypes. Acta Scientific Agriculture, 02–13. https://doi.org/10.31080/ASAG.2023.07.1212
Sharma, V. P. (2017). Performance of Soybean: Recent Trends, Prospects and Constraints. In Oilseed Production in India (pp. 55–79). Springer India. https://doi.org/10.1007/978-81-322-3717-4_4
Shi, W.-Y., Du, Y.-T., Ma, J., Min, D.-H., Jin, L.-G., Chen, J., Chen, M., Zhou, Y.-B., Ma, Y.-Z., Xu, Z.-S., & Zhang, X.-H. (2018). The WRKY Transcription Factor GmWRKY12 Confers Drought and Salt Tolerance in Soybean. International Journal of Molecular Sciences, 19(12), 4087. https://doi.org/10.3390/ijms19124087
Shin, J. H., Vaughn, J. N., Abdel-Haleem, H., Chavarro, C., Abernathy, B., Kim, K. do, Jackson, S. A., & Li, Z. (2015). Transcriptomic changes due to water deficit define a general soybean response and accession-specific pathways for drought avoidance. BMC Plant Biology, 15(1), 26. https://doi.org/10.1186/s12870-015-0422-8
Shu, K., Zhang, H., Wang, S., Chen, M., Wu, Y., Tang, S., Liu, C., Feng, Y., Cao, X., & Xie, Q. (2013). ABI4 Regulates Primary Seed Dormancy by Regulating the Biogenesis of Abscisic Acid and Gibberellins in Arabidopsis. PLoS Genetics, 9(6), e1003577. https://doi.org/10.1371/journal.pgen.1003577
Siebert, S., Ewert, F., Eyshi Rezaei, E., Kage, H., & Graß, R. (2014). Impact of heat stress on crop yield—on the importance of considering canopy temperature. Environmental Research Letters, 9(4), 044012. https://doi.org/10.1088/1748-9326/9/4/044012
Silvente, S., Sobolev, A. P., & Lara, M. (2012). Metabolite Adjustments in Drought Tolerant and Sensitive Soybean Genotypes in Response to Water Stress. PLoS ONE, 7(6), e38554. https://doi.org/10.1371/journal.pone.0038554
Sintaha, M., Man, C.-K., Yung, W.-S., Duan, S., Li, M.-W., & Lam, H.-M. (2022). Drought Stress Priming Improved the Drought Tolerance of Soybean. Plants, 11(21), 2954. https://doi.org/10.3390/plants11212954
Smýkal, P., Nelson, M., Berger, J., & von Wettberg, E. (2018). The Impact of Genetic Changes during Crop Domestication. Agronomy, 8(7), 119. https://doi.org/10.3390/agronomy8070119
Soba, D., Arrese-Igor, C., & Aranjuelo, I. (2022). Additive effects of heatwave and water stresses on soybean seed yield is caused by impaired carbon assimilation at pod formation but not at flowering. Plant Science, 321, 111320. https://doi.org/10.1016/j.plantsci.2022.111320
Song, F., Tang, D.-L., Wang, X.-L., & Wang, Y.-Z. (2011). Biodegradable Soy Protein Isolate-Based Materials: A Review. Biomacromolecules, 12(10), 3369–3380. https://doi.org/10.1021/bm200904x
Song, L., Prince, S., Valliyodan, B., Joshi, T., Maldonado dos Santos, J. v., Wang, J., Lin, L., Wan, J., Wang, Y., Xu, D., & Nguyen, H. T. (2016). Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions. BMC Genomics, 17(1), 57. https://doi.org/10.1186/s12864-016-2378-y
Staniak, M., Szpunar-Krok, E., & Kocira, A. (2023). Responses of Soybean to Selected Abiotic Stresses—Photoperiod, Temperature and Water. Agriculture, 13(1), 146. https://doi.org/10.3390/agriculture13010146
Su, L.-T., Li, J.-W., Liu, D.-Q., Zhai, Y., Zhang, H.-J., Li, X.-W., Zhang, Q.-L., Wang, Y., & Wang, Q.-Y. (2014). A novel MYB transcription factor, GmMYBJ1, from soybean confers drought and cold tolerance in Arabidopsis thaliana. Gene, 538(1), 46–55. https://doi.org/10.1016/j.gene.2014.01.024
Tan, D. X., Tuong, H. M., Thuy, V. T. T., Son, L. van, & Mau, C. H. (2015). Cloning and Overexpression of GmDREB2 Gene from a Vietnamese Drought-resistant Soybean Variety. Brazilian Archives of Biology and Technology, 58(5), 651–657. https://doi.org/10.1590/S1516-89132015050170
The Soybean Processors Association of India (SOPA). https://www.sopa.org/
Tiwari S, Tripathi MK, Kumar S. (2012). Improvement of soybean through plant tissue culture and genetic transformation: a review. JNKVV Res. J. 45 (1), 1-18.
Toorchi, M., Yukawa, K., Nouri, M.-Z., & Komatsu, S. (2009). Proteomics approach for identifying osmotic-stress-related proteins in soybean roots. Peptides, 30(12), 2108–2117. https://doi.org/10.1016/j.peptides.2009.09.006
Tran, L.-S. P., & Mochida, K. (2010). Identification and prediction of abiotic stress responsive transcription factors involved in abiotic stress signaling in soybean. Plant Signaling & Behavior, 5(3), 255–257. https://doi.org/10.4161/psb.5.3.10550
Tripathi, M. K., Tripathi, N., Tiwari, S., Mishra, N., Sharma, A., Tiwari, S., & Singh, S. (2023). Identification of Indian soybean (Glycine max [L.] Merr.) genotypes for drought tolerance and genetic diversity analysis using SSR markers. Scientist, 3, 31-46. https://doi.org/10.5281/zenodo.7697640
Tripathi, N., Tripathi, M. K., Tiwari, S., & Payasi, D. K. (2022). Molecular Breeding to Overcome Biotic Stresses in Soybean: Update. Plants, 11(15), 1967. https://doi.org/10.3390/plants11151967
Tripathy, B. C., & Oelmüller, R. (2012). Reactive oxygen species generation and signaling in plants. Plant Signaling & Behavior, 7(12), 1621–1633. https://doi.org/10.4161/psb.22455
Turner, N. C. (2018). Turgor maintenance by osmotic adjustment: 40 years of progress. Journal of Experimental Botany, 69(13), 3223–3233. https://doi.org/10.1093/jxb/ery181
Upadhyay S, Singh AK, Tripathi MK, Tiwari S, Tripathi N. (2020b).Validation of simple sequence repeats markers for charcoal rot and Rhizoctonia root rot resistance in soybean genotypes. IJABR,10, 137–144.
Upadhyay, S., Singh, A. K., Tripathi, M. K., Tiwari, S., & Tripathi, N. (2022). Biotechnological Interventions to Combat against Charcoal Rot and Rhizoctonia Root Rot Diseases of Soybean [Glycine max (L.) Merrill]. In Current Topics in Agricultural Sciences Vol. 6 (pp. 1–18). Book Publisher International (a part of SCIENCEDOMAIN International). https://doi.org/10.9734/bpi/ctas/v6/3250E
Upadhyay, S., Singh, A. K., Tripathi, M. K., Tiwari, S., Tripathi, N., & Patel, R. P. (2020). In vitro Selection for Resistance against Charcoal Rot Disease of Soybean [Glycine max (L.) Merrill] Caused by Macrophomina phaseolina (Tassi) Goid. Legume Research - an International Journal, Of. https://doi.org/10.18805/LR-4440
USDA, Soybean explorer, 2024. https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=2222000
Vaghar, M. S., Sayfzadeh, S., Zakerin, H. R., Kobraee, S., & Valadabadi, S. A. (2020). Foliar application of iron, zinc, and manganese nano-chelates improves physiological indicators and soybean yield under water deficit stress. Journal of Plant Nutrition, 43(18), 2740–2756. https://doi.org/10.1080/01904167.2020.1793180
Vaishnav, A., & Choudhary, D. K. (2019). Regulation of Drought-Responsive Gene Expression in Glycine max L. Merrill is Mediated Through Pseudomonas simiae Strain AU. Journal of Plant Growth Regulation, 38(1), 333–342. https://doi.org/10.1007/s00344-018-9846-3
van Oosten, M. J., Pepe, O., de Pascale, S., Silletti, S., & Maggio, A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture, 4(1), 5. https://doi.org/10.1186/s40538-017-0089-5
Villalobos-González, L., Alarcón, N., Bastías, R., Pérez, C., Sanz, R., Peña-Neira, Á., & Pastenes, C. (2022). Photoprotection Is Achieved by Photorespiration and Modification of the Leaf Incident Light, and Their Extent Is Modulated by the Stomatal Sensitivity to Water Deficit in Grapevines. Plants, 11(8), 1050. https://doi.org/10.3390/plants11081050
Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., & SkZ, A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, 13–24. https://doi.org/10.1016/j.micres.2015.12.003
Wahab, A., Abdi, G., Saleem, M. H., Ali, B., Ullah, S., Shah, W., Mumtaz, S., Yasin, G., Muresan, C. C., & Marc, R. A. (2022). Plants’ Physio-Biochemical and Phyto-Hormonal Responses to Alleviate the Adverse Effects of Drought Stress: A Comprehensive Review. Plants, 11(13), 1620. https://doi.org/10.3390/plants11131620
Wang, F., Chen, H., Li, Q., Wei, W., Li, W., Zhang, W., Ma, B., Bi, Y., Lai, Y., Liu, X., Man, W., Zhang, J., & Chen, S. (2015). GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants. The Plant Journal, 83(2), 224–236. https://doi.org/10.1111/tpj.12879
Wang, H., Yang, L., Li, Y., Hou, J., Huang, J., & Liang, W. (2016). Involvement of ABA- and H2O2 -dependent cytosolic glucose-6-phosphate dehydrogenase in maintaining redox homeostasis in soybean roots under drought stress. Plant Physiology and Biochemistry, 107, 126–136. https://doi.org/10.1016/j.plaphy.2016.05.040
Wang, H., Zhou, L., Fu, Y., Cheung, M., Wong, F., Phang, T., Sun, Z., & Lam, H. (2012). Expression of an apoplast‐localized BURP‐domain protein from soybean (GmRD22) enhances tolerance towards abiotic stress. Plant, Cell & Environment, 35(11), 1932–1947. https://doi.org/10.1111/j.1365-3040.2012.02526.x
Wang, K., Bu, T., Cheng, Q., Dong, L., Su, T., Chen, Z., Kong, F., Gong, Z., Liu, B., & Li, M. (2021). Two homologous LHY pairs negatively control soybean drought tolerance by repressing the abscisic acid responses. New Phytologist, 229(5), 2660–2675. https://doi.org/10.1111/nph.17019
Wang, N., Zhang, W., Qin, M., Li, S., Qiao, M., Liu, Z., & Xiang, F. (2017). Drought Tolerance Conferred in Soybean (Glycine max. L) by GmMYB84, a Novel R2R3-MYB Transcription Factor. Plant and Cell Physiology, 58(10), 1764–1776. https://doi.org/10.1093/pcp/pcx111
Wang, W., Zhou, B., He, J., Zhao, J., Liu, C., Chen, X., Xing, G., Chen, S., Xing, H., & Gai, J. (2020a). Comprehensive Identification of Drought Tolerance QTL-Allele and Candidate Gene Systems in Chinese Cultivated Soybean Population. International Journal of Molecular Sciences, 21(14), 4830. https://doi.org/10.3390/ijms21144830
Wang, W., Zhou, B., He, J., Zhao, J., Liu, C., Chen, X., Xing, G., Chen, S., Xing, H., & Gai, J. (2020b). Comprehensive Identification of Drought Tolerance QTL-Allele and Candidate Gene Systems in Chinese Cultivated Soybean Population. International Journal of Molecular Sciences, 21(14), 4830. https://doi.org/10.3390/ijms21144830
Wang, X., & Komatsu, S. (2018). Proteomic approaches to uncover the flooding and drought stress response mechanisms in soybean. Journal of Proteomics, 172, 201–215. https://doi.org/10.1016/j.jprot.2017.11.006
Wang, X., Wu, Z., Yan, C., Ma, C., & Dong, S. (2022). Proteomics Analysis of Soybean Seedlings under Short-Term Water Deficit. Phyton, 91(7), 1381–1401. https://doi.org/10.32604/phyton.2022.020251
Wang, X., Wu, Z., Zhou, Q., Wang, X., Song, S., & Dong, S. (2022). Physiological Response of Soybean Plants to Water Deficit. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.809692
Wei, W., Liang, D., Bian, X., Shen, M., Xiao, J., Zhang, W., Ma, B., Lin, Q., Lv, J., Chen, X., Chen, S., & Zhang, J. (2019). GmWRKY54 improves drought tolerance through activating genes in abscisic acid and Ca2+ signaling pathways in transgenic soybean. The Plant Journal, 100(2), 384–398. https://doi.org/10.1111/tpj.14449
Wijewardana, C., Reddy, K. R., & Bellaloui, N. (2019). Soybean seed physiology, quality, and chemical composition under soil moisture stress. Food Chemistry, 278, 92–100. https://doi.org/10.1016/j.foodchem.2018.11.035
Wong, C. E., Singh, M. B., & Bhalla, P. L. (2013). The Dynamics of Soybean Leaf and Shoot Apical Meristem Transcriptome Undergoing Floral Initiation Process. PLoS ONE, 8(6), e65319. https://doi.org/10.1371/journal.pone.0065319
Xiao, Y., Karikari, B., Wang, L., Chang, F., & Zhao, T. (2021). Structure characterization and potential role of soybean phospholipases A multigene family in response to multiple abiotic stress uncovered by CRISPR/Cas9 technology. Environmental and Experimental Botany, 188, 104521. https://doi.org/10.1016/j.envexpbot.2021.104521
Xie, Z.-M., Zou, H.-F., Lei, G., Wei, W., Zhou, Q.-Y., Niu, C.-F., Liao, Y., Tian, A.-G., Ma, B., Zhang, W.-K., Zhang, J.-S., & Chen, S.-Y. (2009). Soybean Trihelix Transcription Factors GmGT-2A and GmGT-2B Improve Plant Tolerance to Abiotic Stresses in Transgenic Arabidopsis. PLoS ONE, 4(9), e6898. https://doi.org/10.1371/journal.pone.0006898
Xing, X., Cao, C., Xu, Z., Qi, Y., Fei, T., Jiang, H., & Wang, X. (2023). Reduced Soybean Water Stress Tolerance by miR393a-Mediated Repression of GmTIR1 and Abscisic Acid Accumulation. Journal of Plant Growth Regulation, 42(2), 1067–1083. https://doi.org/10.1007/s00344-022-10614-4
Xu, Y., Song, D., Qi, X., Asad, M., Wang, S., Tong, X., Jiang, Y., & Wang, S. (2023). Physiological responses and transcriptome analysis of soybean under gradual water deficit. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1269884
Xuan, H., Huang, Y., Zhou, L., Deng, S., Wang, C., Xu, J., Wang, H., Zhao, J., Guo, N., & Xing, H. (2022). Key Soybean Seedlings Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome Analyses of Two Cultivars. International Journal of Molecular Sciences, 23(5), 2893. https://doi.org/10.3390/ijms23052893
Yadav, R. K., Tripathi, M. K., Tiwari, S., Tripathi, N., Asati, R., Chauhan, S., Tiwari, P. N., & Payasi, D. K. (2023). Genome Editing and Improvement of Abiotic Stress Tolerance in Crop Plants. Life, 13(7), 1456. https://doi.org/10.3390/life13071456
Yahoueian, S. H., Bihamta, M. R., Babaei, H. R., & Bazargani, M. M. (2021). Proteomic analysis of drought stress response mechanism in soybean (Glycine max L.) leaves. Food Science & Nutrition, 9(4), 2010–2020. https://doi.org/10.1002/fsn3.2168
Yamasaki, K., Kigawa, T., Seki, M., Shinozaki, K., & Yokoyama, S. (2013). DNA-binding domains of plant-specific transcription factors: structure, function, and evolution. Trends in Plant Science, 18(5), 267–276. https://doi.org/10.1016/j.tplants.2012.09.001
Yang, C., Huang, Y., Lv, W., Zhang, Y., Bhat, J. A., Kong, J., Xing, H., Zhao, J., & Zhao, T. (2020). GmNAC8 acts as a positive regulator in soybean drought stress. Plant Science, 293, 110442. https://doi.org/10.1016/j.plantsci.2020.110442
Yang, W., Wang, M., Yue, A., Wu, J., Li, S., Li, G., & Du, W. (2014). QTLs and epistasis for drought-tolerant physiological index in soybean (Glycine max L.) across different environments. Caryologia, 67(1), 72–78. https://doi.org/10.1080/00087114.2014.892278
Yang, X., Kwon, H., Kim, M. Y., & Lee, S.-H. (2023). RNA-seq profiling in leaf tissues of two soybean (Glycine max [L.] Merr.) cultivars that show contrasting responses to drought stress during early developmental stages. Molecular Breeding, 43(5), 42. https://doi.org/10.1007/s11032-023-01385-1
Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response Mechanism of Plants to Drought Stress. Horticulturae, 7(3), 50. https://doi.org/10.3390/horticulturae7030050
Yao, D., Zhou, J., Zhang, A