Advances in Crop Breeding Research (Volume 1) | Doi : 10.37446/volbook072024/1-10

OPEN ACCESS | Published on : 15-Nov-2024

Breeding for Sustainable Agriculture and Food Security

  • Chetariya C. P.
  • Assistant Professor, Department of Genetics and Plant Breeding, Lovely Professional University, Phagwara-144411 (Punjab), India.
  • Shubham Gopera
  • Ph.D., Research Scholar, Department of Genetics and Plant Breeding, Lovely Professional University, Phagwara-144411 (Punjab), India.
  • Kartik Dogra
  • Department of Genetics and Plant Breeding, Lovely Professional University, Phagwara-144411 (Punjab), India.

Abstract

The interesting topic of sustainable agriculture and food security is explored in this book chapter. It looks at the difficulties in feeding the world's expanding population, highlighting how plant breeding may increase food yields and resilience. The chapter examines the use of genetically modified organisms (GMOs), the creation of crops resistant to abiotic stress, and techniques for water-saving farming. Additionally, it talks about how important plant growth-promoting rhizobacteria (PGPR) are to crop productivity and soil health. The chapter discusses the Green Revolution's historical relevance as well as its effects on the security of food and nutrition. The significance of genetics and sophisticated breeding techniques for crop types robust to climate change is emphasized.

Keywords

Food security, Green revolution, Crop productivity, Climate change

References

  • Abdul Rahman, N. S. N., Abdul Hamid, N. W., & Nadarajah, K. (2021). Effects of abiotic stress on soil microbiome. International Journal of Molecular Sciences22(16), 9036.

    Ahmad, A., Ghouri, M. Z., Munawar, N., Ismail, M., Ashraf, S., & Aftab, S. O. (2021). Regulatory, ethical, and social aspects of CRISPR crops. CRISPR crops: the future of food security, 261-287.et al

    Al-Khayri, J. M., Jain, S. M., & Johnson, D. V. (Eds.). (2016). Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits (Vol. 2). Berlin: Springer.

    Calanca, P. P. (2017). Effects of abiotic stress in crop production. Quantification of climate variability, adaptation and mitigation for agricultural sustainability, 165-180.

    Kenig-witkowska, m. m. (2022). the eu biodiversity strategy for 2030: building nature resilience in the wake of the post pandemic covid-19 socioeconomic recovery. studia iuridica, (91), 146-163.

    Food and Agriculture Organization of the United Nations. (2019). The state of food security and nutrition in the world: safeguarding against economic slowdowns and downturns. Food and Agriculture Organization of the United Nations.

    Fasciglione, G., Casanovas, E. M., Quillehauquy, V., Yommi, A. K., Goñi, M. G., Roura, S. I., & Barassi, C. A. (2015). Azospirillum inoculation effects on growth, product quality and storage life of lettuce plants grown under salt stress. Scientia Horticulturae195, 154-162.

    Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H. S., & Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological research206, 131-140.

    Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. science337(6096), 816-821.et al

    Kaiser, N., Douches, D., Dhingra, A., Glenn, K. C., Herzig, P. R., Stowe, E. C., & Swarup, S. (2020). The role of conventional plant breeding in ensuring safe levels of naturally occurring toxins in food crops. Trends in Food Science & Technology100, 51-66.

    Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature528(7580), 60-68.

    Meemken, E. M., and Qaim. M. 2018. Organic Agriculture, Food Security, and the agriculture. Microbiological research, 206, 131-140.

    Munns, R., James, R. A., Xu, B., Athman, A., Conn, S. J., Jordans, C., ... & Gilliham, M. (2012). Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature biotechnology30(4), 360-364.et al

    Palareti, G., Legnani, C., Cosmi, B., Antonucci, E., Erba, N., Poli, D., ... & Vandelli, M. R. (2016). Comparison between different D‐D imer cutoff values to assess the individual risk of recurrent venous thromboembolism: analysis of results obtained in the DULCIS study. International Journal of Laboratory Hematology38(1), 42-49.et al

    Pandey, A. K., Varshney, R. K., Sudini, H. K., & Pandey, M. K. (2019). An improved enzyme-linked immunosorbent assay (ELISA) based protocol using seeds for detection of five major peanut allergens Ara h 1, Ara h 2, Ara h 3, Ara h 6, and Ara h 8. Frontiers in nutrition6, 68.

    Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-smart soils. Nature532(7597), 49-57.et al

    Pray, C., Huang, J., Hu, R., Deng, H., Yang, J., & Morin, X. K. (2018). Prospects for cultivation of genetically engineered food crops in China. Global Food Security16, 133-137.

    Pretty, J., & Bharucha, Z. P. (2014). Sustainable intensification in agricultural systems. Annals of botany114(8), 1571-1596.

    Qaim, M. (2009). The economics of genetically modified crops. Annu. Rev. Resour. Econ.1(1), 665-694.

    Rajaram, S., Braun, H. J., & van Ginkel, M. (1997). CIMMYT’s approach to breed for drought tolerance. In Adaptation in Plant Breeding: Selected Papers from the XIV EUCARPIA Congress on Adaptation in Plant Breeding held at Jyväskylä, Sweden from July 31 to August 4, 1995 (pp. 161-167). Springer Netherlands.

    Rani, S., Kumar, P., & Suneja, P. (2021). Biotechnological interventions for inducing abiotic stress tolerance in crops. Plant Gene27, 100315.

    Rao, N. S., Laxman, R. H., & Shivashankara, K. S. (2016). Physiological and morphological responses of horticultural crops to abiotic stresses. Abiotic stress physiology of horticultural crops, 3-17.

    Roy, S. J., Tucker, E. J., & Tester, M. (2011). Genetic analysis of abiotic stress tolerance in crops. Current opinion in plant biology14(3), 232-239.

    Sab, S., Lokesha, R., Mannur, D. M., Somasekhar, Jadhav, K., Mallikarjuna, B. P., ... & Thudi, M. (2020). Genome-wide SNP discovery and mapping QTLs for seed iron and zinc concentrations in chickpea (Cicer arietinum L.). Frontiers in Nutrition7, 559120.

    Settle, W., Soumaré, M., Sarr, M., Garba, M. H., & Poisot, A. S. (2014). Reducing pesticide risks to farming communities: cotton farmer field schools in Mali. Philosophical Transactions of the Royal Society B: Biological Sciences369(1639), 20120277.

    Springmann, M., Clark, M., Mason-D’Croz, D., Wiebe, K., Bodirsky, B. L., Lassaletta, L., ... & Willett, W. (2018). Options for keeping the food system within environmental limits. Nature562(7728), 519-525.et al

    Talaat, N. B. (2019). Abiotic stresses-induced physiological alteration in wheat. Wheat Production in Changing Environments: Responses, Adaptation and Tolerance, 1-30.

    Messerli, P., Murniningtyas, E., Eloundou-Enyegue, P., Foli, E. G., Furman, E., Glassman, A., ... & van Ypersele, J. P. (2019). Global sustainable development report 2019: the future is now–science for achieving sustainable development.

    Unkovich, M., McKenzie, D., & Parker, W. (2023). New insights into high soil strength and crop plants; implications for grain crop production in the Australian environment. Plant and Soil486(1), 183-208.

    Wheeler, T., & Von Braun, J. (2013). Climate change impacts on global food security. Science341(6145), 508-513.

    Wolter, F., Schindele, P., & Puchta, H. (2019). Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites. BMC plant biology19(1), 176.

    Zhang, S., Zhang, R., Song, G., Gao, J., Li, W., Han, X., ... & Li, G. (2018). Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat. BMC plant biology18, 1-12.