Advances in Crop Breeding | Doi : 10.37446/edibook072024/1-12

PAID ACCESS | Published on : 31-Dec-2024

Evolution of Crop Plants - Concept of Domestication and its Significant Role in Plant Breeding

  • Chetariya Chana P
  • Department of Genetics and Plant Breeding, Lovely Professional University, Phagwara, Punjab, India.
  • Vidushi Upadhyay
  • Project Associate-I, Centre for Aromatic Plants, Selaqui-248001 Uttarakhand, India.
  • Shubham Gopera
  • Department of Genetics and Plant Breeding, Lovely Professional University, Phagwara, Punjab, India.

Abstract

Domestication is a process of bringing wild plants (or animals) under human management for betterment of social animals and humans in general. This co-evolutionary process leads to origin of new species or differentiated populations that helps critically in human survival. Darwin’s early models of evaluation was dependent on selection and variations occurred due to domestication. Especially, crop domestications are results of process, from arising as a wild plant (animal), cultivation in new selective environment, adaptation to usage by humans. It plays an important role in survival and fitness of Homo sapience by co-evaluation and propagated under human manipulated environment. The results of domestications are not only one sided, it’s mutual and resulted in increased fitness, population size and species area expansion (outside center of origin). Unlike domesticated animals, plants are evident to play role in hybridization (inter/intra specific) and origin of cultivated many food crop species (rice, wheat, banana, citrus etc.). In the past a few decades, plant breeding has advanced faster and better with the new age technologies like genetic engineering, biotechnology, genome editing etc. We are getting clear understanding that domestication is the foundation base for evolution, diversity, diversification, climate resilient cultivars and food security. It hasn’t only led to develop new plant species or varieties with better quantitative and quality traits but it also enables breeders and farmers to cultivate crops outside area of its origin, which contributes to food security and sustainable agriculture.

Keywords

Plant domestications, Genetic diversity, Nature of selection, Crop plant evolution

References

  • Abbo, S., Lev-Yadun, S., & Gopher, A. (2012). Plant domestication and crop evolution in the Near East: on events and processes. Critical Reviews in Plant Sciences31(3), 241-257.

    Abbott, R. J. (1992). Plant invasions, interspecific hybridization and the evolution of new plant taxa. Trends in ecology & evolution7(12), 401-405.

    Allaby, R. G., Banerjee, M., & Brown, T. A. (1999). Evolution of the high molecular weight glutenin loci of the A, B, D, and G genomes of wheat. Genome42(2), 296-307.

    Anonymous, 1971. The Compact Edition of the Oxford English Dictionary. Oxford University Press, N.Y.

    Beasley, J. O. (1940). The origin of American tetraploid Gossypium species. The American Naturalist74(752), 285-286.

    Buckler IV, E. S., & Thornsberry, J. M. (2002). Plant molecular diversity and applications to genomics. Current opinion in plant biology5(2), 107-111.

    Burger, J. C., Chapman, M. A., & Burke, J. M. (2008). Molecular insights into the evolution of crop plants. American journal of botany95(2), 113-122.

    Burke, J. M., Tang, S., Knapp, S. J., & Rieseberg, L. H. (2002). Genetic analysis of sunflower domestication. Genetics161(3), 1257-1267.

    Cai, H., & Morishima, H. (2002). QTL clusters reflect character associations in wild and cultivated rice. Theoretical and Applied Genetics104, 1217-1228.

    Charmet, G. (2011). Wheat domestication: lessons for the future. Comptes rendus biologies334(3), 212-220.

    Chen, Y. H., Gols, R., & Benrey, B. (2015). Crop domestication and its impact on naturally selected trophic interactions. Annual Review of Entomology60(1), 35-58.

    Darwin, C. (1868). The variation of animals and plants under domestication (Vol. 2). John murray. Darwin, C. (2023). Origin of the Species. In British Politics and the environment in the long nineteenth century (pp. 47-55). Routledge.

    Doebley, J. F., Gaut, B. S., & Smith, B. D. (2006). The molecular genetics of crop domestication. Cell127(7), 1309-1321.

    El Baidouri, M., Murat, F., Veyssiere, M., Molinier, M., Flores, R., Burlot, L., ... & Salse, J. (2017). Reconciling the evolutionary origin of bread wheat (Triticum aestivum). New Phytologist213(3), 1477-1486.

    Fan, L., Quan, L., Leng, X., Guo, X., Hu, W., Ruan, S., ... & Zeng, M. (2008). Molecular evidence for post-domestication selection in the Waxy gene of Chinese waxy maize. Molecular breeding22, 329-338.

    Flint-Garcia, S. A. (2013). Genetics and consequences of crop domestication. Journal of Agricultural and Food Chemistry61(35), 8267-8276.

    Frary, A., Nesbitt, T. C., Frary, A., Grandillo, S., Knaap, E. V. D., Cong, B., ... & Tanksley, S. D. (2000). fw2. 2: a quantitative trait locus key to the evolution of tomato fruit size. Science289(5476), 85-88.

    Fuller, D. Q. (2007). Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Annals of Botany100(5), 903-924.

    Fuller, D. Q. (2011). Pathways to Asian civilizations: tracing the origins and spread of rice and rice cultures. Rice4(3), 78-92.

    Fuller, D. Q., Harvey, E., & Qin, L. (2007). Presumed domestication? Evidence for wild rice cultivation and domestication in the fifth millennium BC of the Lower Yangtze region. antiquity81(312), 316-331.

    Gepts, P. (2004). Crop domestication as a long-term selection experiment. Plant breeding reviews24(2), 1-44. Gepts, P. (2005). Plant and animal domestication as human-made evolution. Evolutionary science and society: educating a new generation. Colorado Springs, CO: Biological Sciences Curriculum Study, 180-6.

    Gepts, P., & Papa, R. (2002). Evolution during domestication. Encyclopedia of life sciences, 1-7. Govindaraj, M., Vetriventhan, M., & Srinivasan, M. (2015). Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetics research international2015(1), 431487.

    Gross, B. L., & Olsen, K. M. (2010). Genetic perspectives on crop domestication. Trends in plant science15(9), 529-537.

    Guo, W., Cai, C., Wang, C., Han, Z., Song, X., Wang, K., ... & Zhang, T. (2007). A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics176(1), 527-541.

    Hammer, K. (1984). The domestication syndrome.Harlan, J. R. (1992). Crops and Man. American Society of Agronomy and Crop Science Society of America, Madison. Wisconsin16(2), 63-262.

    Helback, H. (1959). Domestication of Food Plants in the Old World: Joint efforts by botanists and archeologists illuminate the obscure history of plant domestication. Science130(3372), 365-372.

    Himi, E., & Noda, K. (2005). Red grain colour gene (R) of wheat is a Myb-type transcription factor. Euphytica143, 239-242.Janzen, G. M., Wang, L., & Hufford, M. B. (2019). The extent of adaptive wild introgression in crops. New Phytologist221(3), 1279-1288.

    Kato, H., Kogure, K., Liu, X. H., Araki, T., Kato, K., & Itoyama, Y. (1995). Immunohistochemical localization of the low molecular weight stress protein HSP27 following focal cerebral ischemia in the rat. Brain research679(1), 1-7.

    Lee, J. A. (1984). Cotton as a world crop. Cotton24, 1-25. Lupton, F. G. H. (1987). History of wheat breeding. In Wheat breeding: its scientific basis (pp. 51-70). Dordrecht: Springer Netherlands.

    Metzger, R. J., & Silbaugh, B. A. (1970). Location of genes for seed coat color in hexaploid wheat, triticum aestivum l. 1. Crop science10(5), 495-496.

    Meyer, R. S., DuVal, A. E., & Jensen, H. R. (2012). Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytologist196(1), 29-48.

    Morishima, H. (1987). Are the Asian common wild rice differentiated into the indica and japonica types. Crop exploration and utilization of genetic resources, 11-20.

    Nevo, E., Beiles, A., & Ben-Shlomo, R. (1984). The evolutionary significance of genetic diversity: ecological, demographic and life history correlates. In Evolutionary Dynamics of Genetic Diversity: Proceedings of a Symposium held in Manchester, England, March 29–30, 1983 (pp. 13-213). Springer Berlin Heidelberg.

    Olsen, K. M., & Wendel, J. F. (2013). A bountiful harvest: genomic insights into crop domestication phenotypes. Annual review of plant biology64(1), 47-70.

    Paterson, A. H. (2002). What has QTL mapping taught us about plant domestication? New Phytologist154(3), 591-608.

    Piperno, D. R., & Flannery, K. V. (2001). The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications. Proceedings of the National Academy of Sciences98(4), 2101-2103.

    Poltronieri, P., Burbulis, N., & Fogher, C. (Eds.). (2013). From plant genomics to plant biotechnology. Elsevier.Rindos, D. (2013). The origins of agriculture: an evolutionary perspective. Academic Press.

    Salamini, F., Özkan, H., Brandolini, A., Schäfer-Pregl, R., & Martin, W. (2002). Genetics and geography of wild cereal domestication in the near east. Nature Reviews Genetics3(6), 429-441.

    Smith, J. M., & Haigh, J. (1974). The hitch-hiking effect of a favourable gene. Genetics Research23(1), 23-35.

    Smýkal, P., Nelson, M. N., Berger, J. D., & Von Wettberg, E. J. (2018). The impact of genetic changes during crop domestication. Agronomy8(7), 119.

    Stephens, S. G. (1958). Salt water tolerance of seeds of Gossypium species as a possible factor in seed dispersal. The American Naturalist92(863), 83-92.

    Takahashi, R., & Hayashi, J. (1964). Linkage study of two complementary genes for brittle rachis in barley. Berichte des Ohara Instituts für Landwirtschaftliche Biologie, Okayama Universität12(2), 99-105.

    Ting, Y. (1957). The origin and differentiation of cultivated rice in China.

    Vaughan, D. A., Balazs, E., & Heslop-Harrison, J. S. (2007). From crop domestication to super-domestication. Annals of botany100(5), 893-901.

    Vitte, C., Ishii, T., Lamy, F., Brar, D., & Panaud, O. (2004). Genomic paleontology provides evidence for two distinct origins of Asian rice (Oryza sativa L.). Molecular Genetics and Genomics272, 504-511.

    Von Bothmer, R., Sato, K., Komatsuda, T., Yasuda, S., & Fischbeck, G. (2003). The domestication of cultivated barley. Diversity in barley, 9-27.

    Wendel, J. F., & Grover, C. E. (2015). Taxonomy and evolution of the cotton genus, Gossypium. Cotton57, 25-44.

    Xiong, L. Z., Liu, K. D., Dai, X. K., Xu, C. G., & Zhang, Q. (1999). Identification of genetic factors controlling domestication-related traits of rice using an F2 population of a cross between Oryza sativa and O. rufipogon. Theoretical and Applied Genetics98, 243-251.

    Zhijun, Z. (1998). The Middle Yangtze region in China is one place where rice was domesticated: phytolith evidence from the Diaotonghuan Cave, Northern Jiangxi. Antiquity72(278), 885-897.

    Zohary, D. (1964). Spontaneous brittle six-row barleys, their nature and origin.

    Zohary, D. (2004). Unconscious selection and the evolution of domesticated plants. Economic botany58(1), 5-10.