One of the most revolutionary developments in agriculture science is the progression of plant breeding from its traditional roots to the sophisticated, technologically advanced methods of 21st century. From the early days of mass selection and hybrid breeding to the impact of green revolution and the current era of molecular genetics, genomic selection and gene editing, this chapter explores the turning points and breakthroughs that have changed the landscape of plant breeding. Crop improvement has accelerated since the advent of biotechnology, especially genetically modified organisms (GMOs) and CRISPR-based precision breeding, which allows breeders to address complex challenges such as disease resistance, abiotic stress and nutritional enhancement. Alongside these advances, bioinformatics, digital tools and big data have introduced a new precision and predictive power in breeding programs, while remote sensing, nanotechnology and AI applications offer unprecedented insights into crop performance and adaptability. Despite these achievements, plant breeding faces critical challenges, including regulatory and ethical concerns, environmental impacts and public acceptance and need for equitable access to genetic resources. As the global agriculture confronts the demands of climate change, food security and sustainability, the future of plant breeding lies in integrating traditional knowledge with modern genetic tools, fostering resilience and prioritizing agroecological approaches. This chapter offers a thorough summary of the developments, examines both current and emerging technologies and reflects the development of sustainable global food systems in the future.
Conventional breeding, Modern breeding techniques, Hybrid Breeding, Marker Assisted Selection (MAS), GMOs, Genome editing, CRISPR/Cas9, Bioinformatics, Remote sensing, Artificial Intelligence
AV, V. B., Weedon, O. D., & Finckh, M. R. (2019). Exploring the differences between organic and conventional breeding in early vigour traits of winter wheat. European journal of agronomy, 105, 86-95. https://doi.org/10.1016/j.eja.2019.01.008
Abasi, F., Raja, N. I., Ehsan, M., Ali, H., & Shahbaz, M. (2024). Heat and wheat: adaptation strategies with respect to heat shock proteins and antioxidant potential; an era of climate change. International Journal of Biological Macromolecules, 256, 128379. https://doi.org/10.1016/j.ijbiomac.2023.128379
Abdelrahman, M., Al-Sadi, A. M., Pour-Aboughadareh, A., Burritt, D. J., & Tran, L. S. P. (2018). Genome editing using CRISPR/Cas9–targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses. Plant Physiology and Biochemistry, 131, 31-36. https://doi.org/10.1016/j.plaphy.2018.03.012
Aziz, M. A., & Masmoudi, K. (2024). Molecular Breakthroughs in Modern Plant Breeding Techniques. Horticultural Plant Journal. https://doi.org/10.1016/j.hpj.2024.01.004
Acquaah, G. (2015). Conventional plant breeding principles and techniques. Advances in plant breeding strategies: Breeding, biotechnology and molecular tools, 115-158. https://doi.org/10.1007/978-3-319-22521-0_5
Ahmar, S., Gill, R. A., Jung, K. H., Faheem, A., Qasim, M. U., Mubeen, M., & Zhou, W. (2020). Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. International journal of molecular sciences, 21(7), 2590. https://doi.org/10.3390/ijms21072590
Ahmar, S., Mahmood, T., Fiaz, S., Mora-Poblete, F., Shafique, M. S., Chattha, M. S., & Jung, K. H. (2021). Advantage of nanotechnology-based genome editing system and its application in crop improvement. Frontiers in Plant Science, 12, 663849. https://doi.org/10.3389/fpls.2021.663849
Alahmad, S., Rambla, C., Voss-Fels, K. P., & Hickey, L. T. (2022). Accelerating breeding cycles. In Wheat improvement: Food security in a changing climate (pp. 557-571). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-90673-3_30
Ali, Q., Zia, M. A., Kamran, M., Shabaan, M., Zulfiqar, U., Ahmad, M., ... & Maqsood, M. F. (2023). Nanoremediation for heavy metal contamination: A review. Hybrid Advances, 4, 100091. https://doi.org/10.1016/j.hybadv.2023.100091
Asati, R., Tripathi, M. K., Tiwari, S., Yadav, R. K., & Tripathi, N. (2022). Molecular breeding and drought tolerance in chickpea. Life, 12(11), 1846. https://doi.org/10.3390/life12111846
Aslam, B., Basit, M., Nisar, M. A., Khurshid, M., & Rasool, M. H. (2016). Proteomics: technologies and their applications. Journal of chromatographic science, 1-15. https://doi.org/10.1093/chromsci/bmw167
Barfa, D., Tripathi, M. K., Kandalkar, V. S., Gupta, J. C., & Kumar, G. (2017). Heterosis and combining ability analysis for seed yield in Indian mustard [Brassica Juncea (L.) Czern & Coss.]. Ecology, Environment and Conservation, 23, 75-83.
Banakar, R. (2023). Recent advances in precise plant genome editing technology. Genetic Engineering and Genome Editing for Zinc Biofortification of Rice, 45-54. https://doi.org/10.1016/B978-0-323-85406-1.00006-X
Batley, J., & Edwards, D. (2016). The application of genomics and bioinformatics to accelerate crop improvement in a changing climate. Current opinion in plant biology, 30, 78-81. https://doi.org/10.1016/j.pbi.2016.02.002
Batley, J., & Edwards, D. (2016). The application of genomics and bioinformatics to accelerate crop improvement in a changing climate. Current opinion in plant biology, 30, 78-81. https://doi.org/10.1016/j.pbi.2016.02.002
Bharti, A., Jain, U., & Chauhan, N. (2024). From Lab to Field: Nano-Biosensors for Real-time Plant Nutrient Tracking. Plant Nano Biology, 100079. https://doi.org/10.1016/j.plana.2024.100079
Bhat, M. A., Bhat, M. A., Kumar, V., Wani, I. A., Bashir, H., Shah, A. A., ... & Jan, A. T. (2020). The era of editing plant genomes using CRISPR/Cas: A critical appraisal. Journal of Biotechnology, 324, 34-60. https://doi.org/10.1016/j.jbiotec.2020.09.013
Boopathi, N. M., & Boopathi, N. M. (2020). Marker-assisted selection (MAS). Genetic mapping and marker assisted selection: Basics, practice and benefits, 343-388. https://doi.org/10.1007/978-981-15-2949-8_9
Breseghello, F., & Coelho, A. S. G. (2013). Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.). Journal of agricultural and food chemistry, 61(35), 8277-8286. https://doi.org/10.1021/jf305531j
Buriani, A., Garcia-Bermejo, M. L., Bosisio, E., Xu, Q., Li, H., Dong, X., ... & Hylands, P. J. (2012). Omic techniques in systems biology approaches to traditional Chinese medicine research: present and future. Journal of ethnopharmacology, 140(3), 535-544. https://doi.org/10.1016/j.jep.2012.01.055
Can, T. (2014). Introduction to bioinformatics. miRNomics: MicroRNA biology and computational analysis, 51-71. https://doi.org/10.1007/978-1-62703-748-8_4
Caradus, J. R. (2023). Perceptions of plant breeding methods–from ‘phenotypic selection’to ‘genetic modification’and ‘new breeding technologies’. New Zealand Journal of Agricultural Research, 1-49. https://doi.org/10.1080/00288233.2023.2187425
Chen, H. W., Chien, C. C., & Lee, C. R. (2024). Distinct types of selection and genetic architecture shape molecular variation during the domestication of vegetable crops. Plant Physiology, kiae245. https://doi.org/10.1093/plphys/kiae245
Dai, X., & Shen, L. (2022). Advances and trends in omics technology development. Frontiers in Medicine, 9, 911861. https://doi.org/10.3389/fmed.2022.911861
Daniel, A. I., Hüsselmann, L., Shittu, O. K., Gokul, A., Keyster, M., & Klein, A. (2024). Application of nanotechnology and proteomic tools in crop development towards sustainable agriculture. Journal of Crop Science and Biotechnology, 1-21. https://doi.org/10.1007/s12892-024-00235-6
Dar, J. A., Beigh, Z. A., & Wani, A. A. (2017). Polyploidy: Evolution and crop improvement. Chromosome structure and aberrations, 201-218. https://doi.org/10.1007/978-81-322-3673-3_10
Davies, J. P., Kumar, S., & Sastry-Dent, L. (2017). Use of zinc-finger nucleases for crop improvement. Progress in molecular biology and translational science, 149, 47-63. https://doi.org/10.1016/bs.pmbts.2017.03.006
Dheer, P., Rautela, I., Sharma, V., Dhiman, M., Sharma, A., Sharma, N., & Sharma, M. D. (2020). Evolution in crop improvement approaches and future prospects of molecular markers to CRISPR/Cas9 system. Gene, 753, 144795. https://doi.org/10.1016/j.gene.2020.144795
Easwaran, C., Moorthy, G., Christopher, S. R., Mohan, P., Marimuthu, R., Koothan, V., & Nallusamy, S. (2024). Nano hybrid fertilizers: A review on the state of the art in sustainable agriculture. Science of The Total Environment, 172533. https://doi.org/10.1016/j.scitotenv.2024.172533
Fraceto, L. F., Grillo, R., de Medeiros, G. A., Scognamiglio, V., Rea, G., & Bartolucci, C. (2016). Nanotechnology in agriculture: which innovation potential does it have?. Frontiers in Environmental Science, 4, 186737. https://doi.org/10.3389/fenvs.2016.00020
Gaj, T., Sirk, S. J., Shui, S. L., & Liu, J. (2016). Genome-editing technologies: principles and applications. Cold Spring Harbor perspectives in biology, 8(12), a023754. https://doi.org/10.1101/cshperspect.a023754
Gontcharov, S. V., Korotkova, T. S., Goloschapova, N. N., & Nesmyslenov, A. P. (2021). Shuttle breeding in sunflower lines development. Helia, 44(75), 125-130. https://doi.org/10.1515/helia-2021-0011
Goulet, B. E., Roda, F., & Hopkins, R. (2017). Hybridization in plants: old ideas, new techniques. Plant physiology, 173(1), 65-78. https://doi.org/10.1104/pp.16.01340
Gudi, S., Kumar, P., Singh, S., Tanin, M. J., & Sharma, A. (2022). Strategies for accelerating genetic gains in crop plants: special focus on speed breeding. Physiology and molecular biology of plants, 28(10), 1921-1938. https://doi.org/10.1007/s12298-022-01247-8
Gupta, A., Rayeen, F., Mishra, R., Tripathi, M., & Pathak, N. (2023). Nanotechnology applications in sustainable agriculture: An emerging eco-friendly approach. Plant Nano Biology, 4, 100033. https://doi.org/10.1016/j.plana.2023.100033
HajYasien, A. (2023). Introduction to Multiomics Technology. In Machine Learning Methods for Multi-Omics Data Integration (pp. 1-11). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-36502-7_1
Harun, A., Fang, Z., & Chen, C. (2024). The contributions of cytogenetics, genetics, and epigenetics to the stability of plants polyploidy. Discover Plants, 1(1), 11. https://doi.org/10.1007/s44372-024-00012-3
Hasan, N., Choudhary, S., Naaz, N., Sharma, N., & Laskar, R. A. (2021). Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. Journal of Genetic Engineering and Biotechnology, 19(1), 128. https://doi.org/10.1186/s43141-021-00231-1
Hidangmayum, A., Debnath, A., Guru, A., Singh, B. N., Upadhyay, S. K., & Dwivedi, P. (2023). Mechanistic and recent updates in nano-bioremediation for developing green technology to alleviate agricultural contaminants. International Journal of Environmental Science and Technology, 20(10), 11693-11718. https://doi.org/10.1007/s13762-022-04560-7
Jeon, D., Kang, Y., Lee, S., Choi, S., Sung, Y., Lee, T. H., & Kim, C. (2023). Digitalizing breeding in plants: A new trend of next-generation breeding based on genomic prediction. Frontiers in Plant Science, 14, 1092584. https://doi.org/10.3389/fpls.2023.1092584
Joseph, T. M., Al-Hazmi, H. E., Śniatała, B., Esmaeili, A., & Habibzadeh, S. (2023). Nanoparticles and nanofiltration for wastewater treatment: From polluted to fresh water. Environmental Research, 117114. https://doi.org/10.1016/j.envres.2023.117114
Kaiser, N., Douches, D., Dhingra, A., Glenn, K. C., Herzig, P. R., Stowe, E. C., & Swarup, S. (2020). The role of conventional plant breeding in ensuring safe levels of naturally occurring toxins in food crops. Trends in Food Science & Technology, 100, 51-66. https://doi.org/10.1016/j.tifs.2020.03.042
Karmakar, P., Teng, S. W., Murshed, M., Pang, S., Li, Y., & Lin, H. (2024). Crop monitoring by multimodal remote sensing: A review. Remote Sensing Applications: Society and Environment, 33, 101093. https://doi.org/10.1016/j.rsase.2023.101093
Kaur, P., Singh, A., & Chana, I. (2021). Computational techniques and tools for omics data analysis: state-of-the-art, challenges, and future directions. Archives of Computational Methods in Engineering, 28(7), 4595-4631. https://doi.org/10.1007/s11831-021-09547-0
Kharkwal, M. C. (2023). History of plant mutation breeding and global impact of mutant varieties. In Mutation Breeding for Sustainable Food Production and Climate Resilience (pp. 25-55). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-16-9720-3_2
Khiyami, M. A., Almoammar, H., Awad, Y. M., Alghuthaymi, M. A., & Abd-Elsalam, K. A. (2014). Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnology & Biotechnological Equipment, 28(5), 775-785. https://doi.org/10.1080/13102818.2014.960739
Kisliuk, B., Krause, J. C., Meemken, H., Saborío Morales, J. C., Müller, H., & Hertzberg, J. (2024). AI in current and future agriculture: an introductory overview. KI-Künstliche Intelligenz, 1-16. https://doi.org/10.1007/s13218-023-00826-5
Kulabhusan, P. K., Tripathi, A., & Kant, K. (2022). Gold nanoparticles and plant pathogens: an overview and prospective for biosensing in forestry. Sensors, 22(3), 1259. https://doi.org/10.3390/s22031259
Kumar, N., Upadhyay, A., Shukla, S., Bajpai, V. K., Kieliszek, M., Yadav, A., & Kumaravel, V. (2024). Next generation edible nanoformulations for improving post-harvest shelf-life of citrus fruits. Journal of Food Measurement and Characterization, 18(3), 1825-1856. https://doi.org/10.1007/s11694-023-02287-8
Kumari, A., Rana, V., Yadav, S. K., & Kumar, V. (2023). Nanotechnology as a powerful tool in plant sciences: Recent developments, challenges and perspectives. Plant Nano Biology, 100046. https://doi.org/10.1016/j.plana.2023.100046
Kumari, M., Dubey, A. K., Kumar, R., & Kumar, A. (2024). Marker-assisted selection in plant breeding for stress tolerance. In Improving Stress Resilience in Plants (pp. 371-387). Academic Press. https://doi.org/10.1016/B978-0-443-18927-2.00005-4
Lamichhane, S., & Thapa, S. (2022). Advances from conventional to modern plant breeding methodologies. Plant breeding and biotechnology, 10(1), 1-14. https://doi.org/10.9787/PBB.2022.10.1.1
Lenaerts, B., Collard, B. C., & Demont, M. (2019). Improving global food security through accelerated plant breeding. Plant Science, 287, 110207. https://doi.org/10.1016/j.plantsci.2019.110207
López-Caamal, A., & Tovar-Sánchez, E. (2014). Genetic, morphological, and chemical patterns of plant hybridization. Revista chilena de historia natural, 87, 1-14. https://doi.org/10.1186/s40693-014-0016-0
Manfreda, S., & Dor, E. B. (2023). Remote sensing of the environment using unmanned aerial systems. Unmanned Aerial Systems for Monitoring Soil, Vegetation, and Riverine Environments, 3-36. https://doi.org/10.1016/B978-0-323-85283-8.00009-6
Mihoariya, M., Tiwari, S., Yadav, R. K., Asati, R., Solanki, R. S., Tiwari, P. N., ... & Tripathi, M. K. (2023). Genetic variability and diversity analysis for yield and its associated traits in chickpea (Cicer arietinum L.). Current Journal of Applied Science and Technology, 42(16), 17-33.
Mishra, R., Karada, M. S., & Agnihotri, D. (2024). Bioinformatics in Crop Improvement and Agricultural Genomics. In Unraveling New Frontiers and Advances in Bioinformatics (pp. 293-313). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-7123-3_13
Mishra, R., Karada, M. S., Agnihotri, D., & Yadav, N. K. (2024c). Advances in Molecular Genetics: Techniques and Applications. In A. Tigga, M. Shahani, K. Modunshim, Longkho K, & Kumari S (Eds.), Advances in Genetics and Plant Breeding (pp. 44–65). Stella International Publication.
Mishra, R., Singh, Y., Shrivastava, M. K., & Amrate, P. K. (2023). Nanotechnology: A Milestone in Agriculture. In Book: Advances in Biological Sciences and Biotechnology, 5, 13-24.
Mishra, R., & Amrate, P. K. (2024). Genetic Diversity in Crop Improvement-A Cornerstone for Sustainable Agriculture and Global Food Security. Advances in Plant Biotechnology (Volume 1) (pp. 1-21). Cornous Publications LLP. https://doi.org/https://doi.org/10.37446/volbook032024/1-21
Mishra, R., Tripathi, M. K., Tripathi, N., Singh, J., Yadav, P. K., Sikarwar, R. S., ... & Tiwari, S. (2024). Breeding for Major Genes against Drought Stress in Soybean. In Advances in Plant Biotechnology (Volume 1) (pp. 22-68). Cornous Publications LLP. https://doi.org/https://doi.org/10.37446/volbook032024/22-68
Mitchell, N., Campbell, L. G., Ahern, J. R., Paine, K. C., Giroldo, A. B., & Whitney, K. D. (2019). Correlates of hybridization in plants. Evolution Letters, 3(6), 570-585. https://doi.org/10.1002/evl3.146
Mu, H., Wang, B., & Yuan, F. (2022). Bioinformatics in plant breeding and research on disease resistance. Plants, 11(22), 3118. https://doi.org/10.3390/plants11223118
Narad, P., & Kirthanashri, S. V. (2018). Introduction to omics. Omics approaches, technologies and applications: integrative approaches for understanding OMICS data, 1-10. https://doi.org/10.1007/978-981-13-2925-8_1
Omia, E., Bae, H., Park, E., Kim, M. S., Baek, I., Kabenge, I., & Cho, B. K. (2023). Remote sensing in field crop monitoring: A comprehensive review of sensor systems, data analyses and recent advances. Remote Sensing, 15(2), 354. https://doi.org/10.3390/rs15020354
Ortiz, R. (2012). Marker-aided breeding revolutionizes twenty-first century crop improvement. Seed Development: OMICS Technologies toward Improvement of Seed Quality and Crop Yield: OMICS in Seed Biology, 435-452. https://doi.org/10.1007/978-94-007-4749-4_21
Osakabe, Y., & Osakabe, K. (2017). Genome editing to improve abiotic stress responses in plants. Progress in molecular biology and translational science, 149, 99-109. https://doi.org/10.1016/bs.pmbts.2017.03.007
Paliwal, S., Tripathi, M. K., Tiwari, S., Tripathi, N., Payasi, D. K., Tiwari, P. N., ... & Chauhan, S. (2023). Molecular advances to combat different biotic and abiotic stresses in linseed (Linum usitatissimum L.): A comprehensive review. Genes, 14(7), 1461. https://doi.org/10.3390/genes14071461
Prasad, R., Bhattacharyya, A., & Nguyen, Q. D. (2017). Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Frontiers in microbiology, 8, 1014. https://doi.org/10.3389/fmicb.2017.01014
Purugganan, M. D. (2019). Evolutionary insights into the nature of plant domestication. Current Biology, 29(14), R705-R714. https://doi.org/10.1016/j.cub.2019.05.053
Rai, R. K., Karada, M. S., Mishra, R., Agnihotri, D., Patel, K. K., Thakur, S., & Singh, D. (2023). Transformative Role of Remote Sensing in Advancing Horticulture: Optimizing Sustainability, Efficiency and Resilience. International Journal of Environment and Climate Change, 13(10), 3559-3567. https://doi.org/10.9734/ijecc/2023/v13i103026
Rendón-Anaya, M., & Herrera-Estrella, A. (2018). The advantage of parallel selection of domestication genes to accelerate crop improvement. Genome biology, 19, 1-3. https://doi.org/10.1186/s13059-018-1537-7
Sabooni, N., & Gharaghani, A. (2022). Induced polyploidy deeply influences reproductive life cycles, related phytochemical features, and phytohormonal activities in blackberry species. Frontiers in Plant Science, 13, 938284. https://doi.org/10.3389/fpls.2022.938284
Salgotra, R. K., Raina, M., Rathore, R., & Bhat, J. A. (2021). Marker-assisted gene pyramiding (MAGP) for semi dwarfed bacterial blight resistance genes into traditional basmati variety “Ranbir Basmati”. Plant Gene, 26, 100276. https://doi.org/10.1016/j.plgene.2021.100276
Sandhu, K. S., Shiv, A., Kaur, G., Meena, M. R., Raja, A. K., Vengavasi, K., ... & Kumar, S. (2022). Integrated approach in genomic selection to accelerate genetic gain in sugarcane. Plants, 11(16), 2139. https://doi.org/10.3390/plants11162139
Sarkar, M. M., Sarkar, A., & Roy, S. (2022). Interventions of nanotechnology for the growth and stress tolerance in crop plants. In Plant stress: challenges and management in the new decade (pp. 421-443). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-95365-2_26
Sattler, M. C., Carvalho, C. R., & Clarindo, W. R. (2016). The polyploidy and its key role in plant breeding. Planta, 243, 281-296. https://doi.org/10.1007/s00425-015-2450-x
Schley, R. J., Twyford, A. D., & Pennington, R. T. (2022). Hybridization: a ‘double-edged sword’for Neotropical plant diversity. Botanical Journal of the Linnean Society, 199(1), 331-356. https://doi.org/10.1093/botlinnean/boab070
Selvakumar, D., Selvamani, S. B., & Mannu, J. (2024). Overview of the Bioinformatics Databases and Tools for Genome Research and Crop Improvement. In Genomics Data Analysis for Crop Improvement (pp. 229-246). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-6913-5_9
Shan, Y., Li, T., Qu, H., Duan, X., Farag, M. A., Xiao, J., ... & Jiang, Y. (2023). Nano‐preservation: An emerging postharvest technology for quality maintenance and shelf life extension of fresh fruit and vegetable. Food Frontiers, 4(1), 100-130. https://doi.org/10.1002/fft2.201
Shang YiFen, S. Y., Hasan, M. K., Ahammed, G. J., Li MengQi, L. M., Yin HanQin, Y. H., & Zhou Jie, Z. J. (2019). Applications of nanotechnology in plant growth and crop protection: a review. https://doi.org/10.3390/molecules24142558
Singer, S. D., Laurie, J. D., Bilichak, A., Kumar, S., & Singh, J. (2021). Genetic variation and unintended risk in the context of old and new breeding techniques. Critical Reviews in Plant Sciences, 40(1), 68-108. https://doi.org/10.1080/07352689.2021.1883826
Singh, R., Dutt, S., Sharma, P., Sundramoorthy, A. K., Dubey, A., Singh, A., & Arya, S. (2023). Future of nanotechnology in food industry: Challenges in processing, packaging, and food safety. Global Challenges, 7(4), 2200209. https://doi.org/10.1002/gch2.202200209
Singh, Y., & Saxena, M. K. (2022). Insights into the recent advances in nano-bioremediation of pesticides from the contaminated soil. Frontiers in Microbiology, 13, 982611. https://doi.org/10.3389/fmicb.2022.982611
Sinha, D., Maurya, A. K., Abdi, G., Majeed, M., Agarwal, R., Mukherjee, R., ... & Chen, J. T. (2023). Integrated genomic selection for accelerating breeding programs of climate-smart cereals. Genes, 14(7), 1484. https://doi.org/10.3390/genes14071484
Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of remote sensing in precision agriculture: A review. Remote sensing, 12(19), 3136. https://doi.org/10.3390/rs12193136
Soda, N., Verma, L., & Giri, J. (2018). CRISPR-Cas9 based plant genome editing: Significance, opportunities and recent advances. Plant Physiology and Biochemistry, 131, 2-11. https://doi.org/10.1016/j.plaphy.2017.10.024
Stetter, M. G., Gates, D. J., Mei, W., & Ross-Ibarra, J. (2017). How to make a domesticate. Current Biology, 27(17), R896-R900. https://doi.org/10.1016/j.cub.2017.06.048
Sun, L., Lai, M., Ghouri, F., Nawaz, M. A., Ali, F., Baloch, F. S., ... & Shahid, M. Q. (2024). Modern Plant Breeding Techniques in Crop Improvement and Genetic Diversity: From Molecular Markers and Gene Editing to Artificial Intelligence—A Critical Review. Plants, 13(19), 2676. https://doi.org/10.3390/plants13192676
Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58-73. https://doi.org/10.1016/j.aiia.2020.04.002
Tamayo-Ordóñez, M. C., Espinosa-Barrera, L. A., Tamayo-Ordóñez, Y. J., Ayil-Gutiérrez, B., & Sánchez-Teyer, L. F. (2016). Advances and perspectives in the generation of polyploid plant species. Euphytica, 209, 1-22. https://doi.org/10.1007/s10681-016-1646-x
Tan, Y. C., Kumar, A. U., Wong, Y. P., & Ling, A. P. K. (2022). Bioinformatics approaches and applications in plant biotechnology. Journal of Genetic Engineering and Biotechnology, 20(1), 106. https://doi.org/10.1186/s43141-022-00394-5
Tan, Y. C., Kumar, A. U., Wong, Y. P., & Ling, A. P. K. (2022). Bioinformatics approaches and applications in plant biotechnology. Journal of Genetic Engineering and Biotechnology, 20(1), 106.
Tripathi, N., Tripathi, M. K., Tiwari, S., & Payasi, D. K. (2022). Molecular breeding to overcome biotic stresses in soybean: update. Plants, 11(15), 1967. https://doi.org/10.3390/plants11151967
Tripathy, J., Mishra, A., Pandey, M., Thakur, R. R., Chand, S., Rout, P. R., & Shahid, M. K. (2024). Advances in Nanoparticles and Nanocomposites for Water and Wastewater Treatment: A Review. Water, 16(11), 1481. https://doi.org/10.3390/w16111481
Udage, A. C. (2021). Introduction to plant mutation breeding: Different approaches and mutagenic agents. Journal of Agricultural Sciences (Sri Lanka), 16(3). https://doi.org/10.4038/jas.v16i03.9472
Virk, V., Deepak, H., Taneja, K., Srivastava, R., & Giri, S. (2024). Amelioration in nanobiosensors for the control of plant diseases: current status and future challenges. Frontiers in Nanotechnology, 6, 1310165. https://doi.org/10.3389/fnano.2024.1310165
Vishwakarma, M. K., Yadav, P. S., Rai, V. P., Kumar, U., & Joshi, A. K. (2022). Molecular markers and genomics assisted breeding for improving crop plants. In Relationship Between Microbes and the Environment for Sustainable Ecosystem Services, Volume 1 (pp. 303-334). Elsevier. https://doi.org/10.1016/B978-0-323-89938-3.00014-1
Wang, D., Saleh, N. B., Byro, A., Zepp, R., Sahle-Demessie, E., Luxton, T. P., ... & Su, C. (2022). Nano-enabled pesticides for sustainable agriculture and global food security. Nature nanotechnology, 17(4), 347-360. https://doi.org/10.1038/s41565-022-01082-8
Watson, A., Ghosh, S., Williams, M. J., Cuddy, W. S., Simmonds, J., Rey, M. D., ... & Hickey, L. T. (2018). Speed breeding is a powerful tool to accelerate crop research and breeding. Nature plants, 4(1), 23-29. https://doi.org/10.1038/s41477-017-0083-8
Williams, K., Subramani, M., Lofton, L. W., Penney, M., Todd, A., & Ozbay, G. (2024). Tools and Techniques to Accelerate Crop Breeding. Plants, 13(11), 1520. https://doi.org/10.3390/plants13111520
Wright, D. (2015). Article commentary: the genetic architecture of domestication in animals. Bioinformatics and biology insights, 9, BBI-S28902. https://doi.org/10.4137/BBI.S28902
Wu, K., Xu, C., Li, T., Ma, H., Gong, J., Li, X., ... & Hu, X. (2023). Application of Nanotechnology in Plant Genetic Engineering. International Journal of Molecular Sciences, 24(19), 14836. https://doi.org/10.3390/ijms241914836
Xu, Y., Luo, H., Zhang, H., Yung, W. S., Li, M. W., Lam, H. M., & Huang, C. (2023). Feeding the world using speed breeding technology. Trends in Plant Science, 28(3), 372-373. https://doi.org/10.1016/j.tplants.2022.12.003
Yadav, R. K., Tripathi, M. K., Tiwari, S., Tripathi, N., Asati, R., Patel, V., ... & Payasi, D. K. (2023). Breeding and genomic approaches towards development of fusarium wilt resistance in chickpea. Life, 13(4), 988. https://doi.org/10.3390/life13040988
Yadav, R. K., Tripathi, M. K., Tiwari, S., Tripathi, N., Asati, R., Chauhan, S., ... & Payasi, D. K. (2023). Genome editing and improvement of abiotic stress tolerance in crop plants. Life, 13(7), 1456. https://doi.org/10.3390/life13071456
Yadav, A., Yadav, K., & Abd-Elsalam, K. A. (2023). Nanofertilizers: types, delivery and advantages in agricultural sustainability. Agrochemicals, 2(2), 296-336. https://doi.org/10.3390/agrochemicals2020019
Yadav, A., Yadav, K., Ahmad, R., & Abd-Elsalam, K. A. (2023). Emerging frontiers in nanotechnology for precision agriculture: advancements, hurdles and prospects. Agrochemicals, 2(2), 220-256. https://doi.org/10.3390/agrochemicals2020016
Yali, W., & Mitiku, T. (2022). Mutation breeding and its importance in modern plant breeding. Journal of Plant Sciences, 10(2), 64-70. https://doi.org/10.11648/j.jps.20221002.13
Yang, Y., Saand, M. A., Huang, L., Abdelaal, W. B., Zhang, J., Wu, Y., ... & Wang, F. (2021). Applications of multi-omics technologies for crop improvement. Frontiers in Plant Science, 12, 563953. https://doi.org/10.3389/fpls.2021.563953
Yoon, J. B., Kwon, S. W., Ham, T. H., Kim, S., Thomson, M., Hechanova, S. L., ... & Park, Y. (2015). Marker-assisted breeding. Current Technologies in Plant Molecular Breeding: A Guide Book of Plant Molecular Breeding for Researchers, 95-144. https://doi.org/10.1007/978-94-017-9996-6_4
Zain, M., Ma, H., Nuruzzaman, M., Chaudhary, S., Nadeem, M., Shakoor, N., ... & Ahamad, T. (2023). Nanotechnology based precision agriculture for alleviating biotic and abiotic stress in plants. Plant Stress, 10, 100239. https://doi.org/10.1016/j.stress.2023.100239
Zain, M., Ma, H., Nuruzzaman, M., Chaudhary, S., Nadeem, M., Shakoor, N., ... & Ahamad, T. (2023). Nanotechnology based precision agriculture for alleviating biotic and abiotic stress in plants. Plant Stress, 10, 100239. https://doi.org/10.1016/j.envres.2024.119722
Zha, J. (2020, December). Artificial intelligence in agriculture. In Journal of Physics: Conference Series (Vol. 1693, No. 1, p. 012058). IOP Publishing. https://doi.org/10.1088/1742-6596/1693/1/012058
Zhu, C., Bortesi, L., Baysal, C., Twyman, R. M., Fischer, R., Capell, T., ... & Christou, P. (2017). Characteristics of genome editing mutations in cereal crops. Trends in Plant Science, 22(1), 38-52. https://doi.org/10.1016/j.tplants.2016.08.009
Zhu, C., Bortesi, L., Baysal, C., Twyman, R. M., Fischer, R., Capell, T., ... & Christou, P. (2017). Characteristics of genome editing mutations in cereal crops. Trends in Plant Science, 22(1), 38-52. https://doi.org/10.1007/s11051-017-4056-7