Recent Advances in Plant Breeding (Volume 1) | Doi : 10.37446/volbook102024/1-20

PAID ACCESS | Published on : 01-Dec-2024

From Conventional to Modern Plant Breeding: How Far have We Come?

  • Riya Mishra
  • Department of Genetics and Plant Breeding, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior (M.P.), India.
  • M. K. Tripathi
  • Department of Genetics and Plant Breeding, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior (M.P.), India.
  • M. K. Shrivastava
  • Department of Plant Breeding and Genetics, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur (M.P.), India.
  • Pawan K. Amrate
  • Department of Plant Breeding and Genetics, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur (M.P.), India.
  • Jagendra Singh
  • Zonal Agriculture Research Station Morena, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior (M.P.), India.
  • Yogendra Singh
  • Department of Plant Breeding and Genetics, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur (M.P.), India.

Abstract

One of the most revolutionary developments in agriculture science is the progression of plant breeding from its traditional roots to the sophisticated, technologically advanced methods of 21st century. From the early days of mass selection and hybrid breeding to the impact of green revolution and the current era of molecular genetics, genomic selection and gene editing, this chapter explores the turning points and breakthroughs that have changed the landscape of plant breeding. Crop improvement has accelerated since the advent of biotechnology, especially genetically modified organisms (GMOs) and CRISPR-based precision breeding, which allows breeders to address complex challenges such as disease resistance, abiotic stress and nutritional enhancement. Alongside these advances, bioinformatics, digital tools and big data have introduced a new precision and predictive power in breeding programs, while remote sensing, nanotechnology and AI applications offer unprecedented insights into crop performance and adaptability. Despite these achievements, plant breeding faces critical challenges, including regulatory and ethical concerns, environmental impacts and public acceptance and need for equitable access to genetic resources. As the global agriculture confronts the demands of climate change, food security and sustainability, the future of plant breeding lies in integrating traditional knowledge with modern genetic tools, fostering resilience and prioritizing agroecological approaches. This chapter offers a thorough summary of the developments, examines both current and emerging technologies and reflects the development of sustainable global food systems in the future.

Keywords

Conventional breeding, Modern breeding techniques, Hybrid Breeding, Marker Assisted Selection (MAS), GMOs, Genome editing, CRISPR/Cas9, Bioinformatics, Remote sensing, Artificial Intelligence

References

  • AV, V. B., Weedon, O. D., & Finckh, M. R. (2019). Exploring the differences between organic and conventional breeding in early vigour traits of winter wheat. European journal of agronomy105, 86-95. https://doi.org/10.1016/j.eja.2019.01.008

    Abasi, F., Raja, N. I., Ehsan, M., Ali, H., & Shahbaz, M. (2024). Heat and wheat: adaptation strategies with respect to heat shock proteins and antioxidant potential; an era of climate change. International Journal of Biological Macromolecules256, 128379. https://doi.org/10.1016/j.ijbiomac.2023.128379

    Abdelrahman, M., Al-Sadi, A. M., Pour-Aboughadareh, A., Burritt, D. J., & Tran, L. S. P. (2018). Genome editing using CRISPR/Cas9–targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses. Plant Physiology and Biochemistry131, 31-36. https://doi.org/10.1016/j.plaphy.2018.03.012

    Aziz, M. A., & Masmoudi, K. (2024). Molecular Breakthroughs in Modern Plant Breeding Techniques. Horticultural Plant Journal. https://doi.org/10.1016/j.hpj.2024.01.004

    Acquaah, G. (2015). Conventional plant breeding principles and techniques. Advances in plant breeding strategies: Breeding, biotechnology and molecular tools, 115-158. https://doi.org/10.1007/978-3-319-22521-0_5

    Ahmar, S., Gill, R. A., Jung, K. H., Faheem, A., Qasim, M. U., Mubeen, M., & Zhou, W. (2020). Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. International journal of molecular sciences21(7), 2590. https://doi.org/10.3390/ijms21072590

    Ahmar, S., Mahmood, T., Fiaz, S., Mora-Poblete, F., Shafique, M. S., Chattha, M. S., & Jung, K. H. (2021). Advantage of nanotechnology-based genome editing system and its application in crop improvement. Frontiers in Plant Science12, 663849. https://doi.org/10.3389/fpls.2021.663849

    Alahmad, S., Rambla, C., Voss-Fels, K. P., & Hickey, L. T. (2022). Accelerating breeding cycles. In Wheat improvement: Food security in a changing climate (pp. 557-571). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-90673-3_30

    Ali, Q., Zia, M. A., Kamran, M., Shabaan, M., Zulfiqar, U., Ahmad, M., ... & Maqsood, M. F. (2023). Nanoremediation for heavy metal contamination: A review. Hybrid Advances4, 100091. https://doi.org/10.1016/j.hybadv.2023.100091

    Asati, R., Tripathi, M. K., Tiwari, S., Yadav, R. K., & Tripathi, N. (2022). Molecular breeding and drought tolerance in chickpea. Life12(11), 1846. https://doi.org/10.3390/life12111846

    Aslam, B., Basit, M., Nisar, M. A., Khurshid, M., & Rasool, M. H. (2016). Proteomics: technologies and their applications. Journal of chromatographic science, 1-15. https://doi.org/10.1093/chromsci/bmw167

    Barfa, D., Tripathi, M. K., Kandalkar, V. S., Gupta, J. C., & Kumar, G. (2017). Heterosis and combining ability analysis for seed yield in Indian mustard [Brassica Juncea (L.) Czern & Coss.]. Ecology, Environment and Conservation23, 75-83.

    Banakar, R. (2023). Recent advances in precise plant genome editing technology. Genetic Engineering and Genome Editing for Zinc Biofortification of Rice, 45-54. https://doi.org/10.1016/B978-0-323-85406-1.00006-X

    Batley, J., & Edwards, D. (2016). The application of genomics and bioinformatics to accelerate crop improvement in a changing climate. Current opinion in plant biology30, 78-81. https://doi.org/10.1016/j.pbi.2016.02.002

    Batley, J., & Edwards, D. (2016). The application of genomics and bioinformatics to accelerate crop improvement in a changing climate. Current opinion in plant biology30, 78-81. https://doi.org/10.1016/j.pbi.2016.02.002

    Bharti, A., Jain, U., & Chauhan, N. (2024). From Lab to Field: Nano-Biosensors for Real-time Plant Nutrient Tracking. Plant Nano Biology, 100079. https://doi.org/10.1016/j.plana.2024.100079

    Bhat, M. A., Bhat, M. A., Kumar, V., Wani, I. A., Bashir, H., Shah, A. A., ... & Jan, A. T. (2020). The era of editing plant genomes using CRISPR/Cas: A critical appraisal. Journal of Biotechnology324, 34-60. https://doi.org/10.1016/j.jbiotec.2020.09.013

    Boopathi, N. M., & Boopathi, N. M. (2020). Marker-assisted selection (MAS). Genetic mapping and marker assisted selection: Basics, practice and benefits, 343-388. https://doi.org/10.1007/978-981-15-2949-8_9

    Breseghello, F., & Coelho, A. S. G. (2013). Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.). Journal of agricultural and food chemistry61(35), 8277-8286. https://doi.org/10.1021/jf305531j

    Buriani, A., Garcia-Bermejo, M. L., Bosisio, E., Xu, Q., Li, H., Dong, X., ... & Hylands, P. J. (2012). Omic techniques in systems biology approaches to traditional Chinese medicine research: present and future. Journal of ethnopharmacology140(3), 535-544. https://doi.org/10.1016/j.jep.2012.01.055

    Can, T. (2014). Introduction to bioinformatics. miRNomics: MicroRNA biology and computational analysis, 51-71. https://doi.org/10.1007/978-1-62703-748-8_4

    Caradus, J. R. (2023). Perceptions of plant breeding methods–from ‘phenotypic selection’to ‘genetic modification’and ‘new breeding technologies’. New Zealand Journal of Agricultural Research, 1-49. https://doi.org/10.1080/00288233.2023.2187425

    Chen, H. W., Chien, C. C., & Lee, C. R. (2024). Distinct types of selection and genetic architecture shape molecular variation during the domestication of vegetable crops. Plant Physiology, kiae245. https://doi.org/10.1093/plphys/kiae245

    Dai, X., & Shen, L. (2022). Advances and trends in omics technology development. Frontiers in Medicine9, 911861. https://doi.org/10.3389/fmed.2022.911861

    Daniel, A. I., Hüsselmann, L., Shittu, O. K., Gokul, A., Keyster, M., & Klein, A. (2024). Application of nanotechnology and proteomic tools in crop development towards sustainable agriculture. Journal of Crop Science and Biotechnology, 1-21. https://doi.org/10.1007/s12892-024-00235-6

    Dar, J. A., Beigh, Z. A., & Wani, A. A. (2017). Polyploidy: Evolution and crop improvement. Chromosome structure and aberrations, 201-218. https://doi.org/10.1007/978-81-322-3673-3_10

    Davies, J. P., Kumar, S., & Sastry-Dent, L. (2017). Use of zinc-finger nucleases for crop improvement. Progress in molecular biology and translational science149, 47-63. https://doi.org/10.1016/bs.pmbts.2017.03.006

    Dheer, P., Rautela, I., Sharma, V., Dhiman, M., Sharma, A., Sharma, N., & Sharma, M. D. (2020). Evolution in crop improvement approaches and future prospects of molecular markers to CRISPR/Cas9 system. Gene753, 144795. https://doi.org/10.1016/j.gene.2020.144795

    Easwaran, C., Moorthy, G., Christopher, S. R., Mohan, P., Marimuthu, R., Koothan, V., & Nallusamy, S. (2024). Nano hybrid fertilizers: A review on the state of the art in sustainable agriculture. Science of The Total Environment, 172533. https://doi.org/10.1016/j.scitotenv.2024.172533

    Fraceto, L. F., Grillo, R., de Medeiros, G. A., Scognamiglio, V., Rea, G., & Bartolucci, C. (2016). Nanotechnology in agriculture: which innovation potential does it have?. Frontiers in Environmental Science4, 186737. https://doi.org/10.3389/fenvs.2016.00020

    Gaj, T., Sirk, S. J., Shui, S. L., & Liu, J. (2016). Genome-editing technologies: principles and applications. Cold Spring Harbor perspectives in biology8(12), a023754. https://doi.org/10.1101/cshperspect.a023754

    Gontcharov, S. V., Korotkova, T. S., Goloschapova, N. N., & Nesmyslenov, A. P. (2021). Shuttle breeding in sunflower lines development. Helia44(75), 125-130. https://doi.org/10.1515/helia-2021-0011

    Goulet, B. E., Roda, F., & Hopkins, R. (2017). Hybridization in plants: old ideas, new techniques. Plant physiology173(1), 65-78. https://doi.org/10.1104/pp.16.01340

    Gudi, S., Kumar, P., Singh, S., Tanin, M. J., & Sharma, A. (2022). Strategies for accelerating genetic gains in crop plants: special focus on speed breeding. Physiology and molecular biology of plants28(10), 1921-1938. https://doi.org/10.1007/s12298-022-01247-8

    Gupta, A., Rayeen, F., Mishra, R., Tripathi, M., & Pathak, N. (2023). Nanotechnology applications in sustainable agriculture: An emerging eco-friendly approach. Plant Nano Biology4, 100033. https://doi.org/10.1016/j.plana.2023.100033

    HajYasien, A. (2023). Introduction to Multiomics Technology. In Machine Learning Methods for Multi-Omics Data Integration (pp. 1-11). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-36502-7_1

    Harun, A., Fang, Z., & Chen, C. (2024). The contributions of cytogenetics, genetics, and epigenetics to the stability of plants polyploidy. Discover Plants1(1), 11. https://doi.org/10.1007/s44372-024-00012-3

    Hasan, N., Choudhary, S., Naaz, N., Sharma, N., & Laskar, R. A. (2021). Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. Journal of Genetic Engineering and Biotechnology19(1), 128. https://doi.org/10.1186/s43141-021-00231-1

    Hidangmayum, A., Debnath, A., Guru, A., Singh, B. N., Upadhyay, S. K., & Dwivedi, P. (2023). Mechanistic and recent updates in nano-bioremediation for developing green technology to alleviate agricultural contaminants. International Journal of Environmental Science and Technology20(10), 11693-11718. https://doi.org/10.1007/s13762-022-04560-7

    Jeon, D., Kang, Y., Lee, S., Choi, S., Sung, Y., Lee, T. H., & Kim, C. (2023). Digitalizing breeding in plants: A new trend of next-generation breeding based on genomic prediction. Frontiers in Plant Science14, 1092584. https://doi.org/10.3389/fpls.2023.1092584

    Joseph, T. M., Al-Hazmi, H. E., Śniatała, B., Esmaeili, A., & Habibzadeh, S. (2023). Nanoparticles and nanofiltration for wastewater treatment: From polluted to fresh water. Environmental Research, 117114. https://doi.org/10.1016/j.envres.2023.117114

    Kaiser, N., Douches, D., Dhingra, A., Glenn, K. C., Herzig, P. R., Stowe, E. C., & Swarup, S. (2020). The role of conventional plant breeding in ensuring safe levels of naturally occurring toxins in food crops. Trends in Food Science & Technology100, 51-66. https://doi.org/10.1016/j.tifs.2020.03.042

    Karmakar, P., Teng, S. W., Murshed, M., Pang, S., Li, Y., & Lin, H. (2024). Crop monitoring by multimodal remote sensing: A review. Remote Sensing Applications: Society and Environment33, 101093. https://doi.org/10.1016/j.rsase.2023.101093

    Kaur, P., Singh, A., & Chana, I. (2021). Computational techniques and tools for omics data analysis: state-of-the-art, challenges, and future directions. Archives of Computational Methods in Engineering28(7), 4595-4631. https://doi.org/10.1007/s11831-021-09547-0

    Kharkwal, M. C. (2023). History of plant mutation breeding and global impact of mutant varieties. In Mutation Breeding for Sustainable Food Production and Climate Resilience (pp. 25-55). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-16-9720-3_2

    Khiyami, M. A., Almoammar, H., Awad, Y. M., Alghuthaymi, M. A., & Abd-Elsalam, K. A. (2014). Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnology & Biotechnological Equipment28(5), 775-785. https://doi.org/10.1080/13102818.2014.960739

    Kisliuk, B., Krause, J. C., Meemken, H., Saborío Morales, J. C., Müller, H., & Hertzberg, J. (2024). AI in current and future agriculture: an introductory overview. KI-Künstliche Intelligenz, 1-16. https://doi.org/10.1007/s13218-023-00826-5

    Kulabhusan, P. K., Tripathi, A., & Kant, K. (2022). Gold nanoparticles and plant pathogens: an overview and prospective for biosensing in forestry. Sensors22(3), 1259. https://doi.org/10.3390/s22031259

    Kumar, N., Upadhyay, A., Shukla, S., Bajpai, V. K., Kieliszek, M., Yadav, A., & Kumaravel, V. (2024). Next generation edible nanoformulations for improving post-harvest shelf-life of citrus fruits. Journal of Food Measurement and Characterization18(3), 1825-1856. https://doi.org/10.1007/s11694-023-02287-8

    Kumari, A., Rana, V., Yadav, S. K., & Kumar, V. (2023). Nanotechnology as a powerful tool in plant sciences: Recent developments, challenges and perspectives. Plant Nano Biology, 100046. https://doi.org/10.1016/j.plana.2023.100046

    Kumari, M., Dubey, A. K., Kumar, R., & Kumar, A. (2024). Marker-assisted selection in plant breeding for stress tolerance. In Improving Stress Resilience in Plants (pp. 371-387). Academic Press. https://doi.org/10.1016/B978-0-443-18927-2.00005-4

    Lamichhane, S., & Thapa, S. (2022). Advances from conventional to modern plant breeding methodologies. Plant breeding and biotechnology10(1), 1-14. https://doi.org/10.9787/PBB.2022.10.1.1

    Lenaerts, B., Collard, B. C., & Demont, M. (2019). Improving global food security through accelerated plant breeding. Plant Science287, 110207. https://doi.org/10.1016/j.plantsci.2019.110207

    López-Caamal, A., & Tovar-Sánchez, E. (2014). Genetic, morphological, and chemical patterns of plant hybridization. Revista chilena de historia natural87, 1-14. https://doi.org/10.1186/s40693-014-0016-0

    Manfreda, S., & Dor, E. B. (2023). Remote sensing of the environment using unmanned aerial systems. Unmanned Aerial Systems for Monitoring Soil, Vegetation, and Riverine Environments, 3-36. https://doi.org/10.1016/B978-0-323-85283-8.00009-6

    Mihoariya, M., Tiwari, S., Yadav, R. K., Asati, R., Solanki, R. S., Tiwari, P. N., ... & Tripathi, M. K. (2023). Genetic variability and diversity analysis for yield and its associated traits in chickpea (Cicer arietinum L.). Current Journal of Applied Science and Technology42(16), 17-33.

    Mishra, R., Karada, M. S., & Agnihotri, D. (2024). Bioinformatics in Crop Improvement and Agricultural Genomics. In Unraveling New Frontiers and Advances in Bioinformatics (pp. 293-313). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-7123-3_13

    Mishra, R., Karada, M. S., Agnihotri, D., & Yadav, N. K. (2024c). Advances in Molecular Genetics: Techniques and Applications. In A. Tigga, M. Shahani, K. Modunshim, Longkho K, & Kumari S (Eds.), Advances in Genetics and Plant Breeding (pp. 44–65). Stella International Publication.

    Mishra, R., Singh, Y., Shrivastava, M. K., & Amrate, P. K. (2023). Nanotechnology: A Milestone in Agriculture. In Book: Advances in Biological Sciences and Biotechnology, 5, 13-24.

    Mishra, R., & Amrate, P. K. (2024). Genetic Diversity in Crop Improvement-A Cornerstone for Sustainable Agriculture and Global Food Security. Advances in Plant Biotechnology (Volume 1) (pp. 1-21). Cornous Publications LLP. https://doi.org/https://doi.org/10.37446/volbook032024/1-21

    Mishra, R., Tripathi, M. K., Tripathi, N., Singh, J., Yadav, P. K., Sikarwar, R. S., ... & Tiwari, S. (2024). Breeding for Major Genes against Drought Stress in Soybean. In Advances in Plant Biotechnology (Volume 1) (pp. 22-68). Cornous Publications LLP. https://doi.org/https://doi.org/10.37446/volbook032024/22-68

    Mitchell, N., Campbell, L. G., Ahern, J. R., Paine, K. C., Giroldo, A. B., & Whitney, K. D. (2019). Correlates of hybridization in plants. Evolution Letters3(6), 570-585. https://doi.org/10.1002/evl3.146

    Mu, H., Wang, B., & Yuan, F. (2022). Bioinformatics in plant breeding and research on disease resistance. Plants11(22), 3118. https://doi.org/10.3390/plants11223118

    Narad, P., & Kirthanashri, S. V. (2018). Introduction to omics. Omics approaches, technologies and applications: integrative approaches for understanding OMICS data, 1-10. https://doi.org/10.1007/978-981-13-2925-8_1

    Omia, E., Bae, H., Park, E., Kim, M. S., Baek, I., Kabenge, I., & Cho, B. K. (2023). Remote sensing in field crop monitoring: A comprehensive review of sensor systems, data analyses and recent advances. Remote Sensing15(2), 354. https://doi.org/10.3390/rs15020354

    Ortiz, R. (2012). Marker-aided breeding revolutionizes twenty-first century crop improvement. Seed Development: OMICS Technologies toward Improvement of Seed Quality and Crop Yield: OMICS in Seed Biology, 435-452. https://doi.org/10.1007/978-94-007-4749-4_21

    Osakabe, Y., & Osakabe, K. (2017). Genome editing to improve abiotic stress responses in plants. Progress in molecular biology and translational science149, 99-109. https://doi.org/10.1016/bs.pmbts.2017.03.007

    Paliwal, S., Tripathi, M. K., Tiwari, S., Tripathi, N., Payasi, D. K., Tiwari, P. N., ... & Chauhan, S. (2023). Molecular advances to combat different biotic and abiotic stresses in linseed (Linum usitatissimum L.): A comprehensive review. Genes14(7), 1461. https://doi.org/10.3390/genes14071461

    Prasad, R., Bhattacharyya, A., & Nguyen, Q. D. (2017). Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Frontiers in microbiology8, 1014. https://doi.org/10.3389/fmicb.2017.01014

    Purugganan, M. D. (2019). Evolutionary insights into the nature of plant domestication. Current Biology29(14), R705-R714. https://doi.org/10.1016/j.cub.2019.05.053

    Rai, R. K., Karada, M. S., Mishra, R., Agnihotri, D., Patel, K. K., Thakur, S., & Singh, D. (2023). Transformative Role of Remote Sensing in Advancing Horticulture: Optimizing Sustainability, Efficiency and Resilience. International Journal of Environment and Climate Change13(10), 3559-3567. https://doi.org/10.9734/ijecc/2023/v13i103026

    Rendón-Anaya, M., & Herrera-Estrella, A. (2018). The advantage of parallel selection of domestication genes to accelerate crop improvement. Genome biology19, 1-3. https://doi.org/10.1186/s13059-018-1537-7

    Sabooni, N., & Gharaghani, A. (2022). Induced polyploidy deeply influences reproductive life cycles, related phytochemical features, and phytohormonal activities in blackberry species. Frontiers in Plant Science13, 938284. https://doi.org/10.3389/fpls.2022.938284

    Salgotra, R. K., Raina, M., Rathore, R., & Bhat, J. A. (2021). Marker-assisted gene pyramiding (MAGP) for semi dwarfed bacterial blight resistance genes into traditional basmati variety “Ranbir Basmati”. Plant Gene26, 100276. https://doi.org/10.1016/j.plgene.2021.100276

    Sandhu, K. S., Shiv, A., Kaur, G., Meena, M. R., Raja, A. K., Vengavasi, K., ... & Kumar, S. (2022). Integrated approach in genomic selection to accelerate genetic gain in sugarcane. Plants11(16), 2139. https://doi.org/10.3390/plants11162139

    Sarkar, M. M., Sarkar, A., & Roy, S. (2022). Interventions of nanotechnology for the growth and stress tolerance in crop plants. In Plant stress: challenges and management in the new decade (pp. 421-443). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-95365-2_26

    Sattler, M. C., Carvalho, C. R., & Clarindo, W. R. (2016). The polyploidy and its key role in plant breeding. Planta243, 281-296. https://doi.org/10.1007/s00425-015-2450-x

    Schley, R. J., Twyford, A. D., & Pennington, R. T. (2022). Hybridization: a ‘double-edged sword’for Neotropical plant diversity. Botanical Journal of the Linnean Society199(1), 331-356. https://doi.org/10.1093/botlinnean/boab070

    Selvakumar, D., Selvamani, S. B., & Mannu, J. (2024). Overview of the Bioinformatics Databases and Tools for Genome Research and Crop Improvement. In Genomics Data Analysis for Crop Improvement (pp. 229-246). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-6913-5_9

    Shan, Y., Li, T., Qu, H., Duan, X., Farag, M. A., Xiao, J., ... & Jiang, Y. (2023). Nano‐preservation: An emerging postharvest technology for quality maintenance and shelf life extension of fresh fruit and vegetable. Food Frontiers4(1), 100-130. https://doi.org/10.1002/fft2.201

    Shang YiFen, S. Y., Hasan, M. K., Ahammed, G. J., Li MengQi, L. M., Yin HanQin, Y. H., & Zhou Jie, Z. J. (2019). Applications of nanotechnology in plant growth and crop protection: a review. https://doi.org/10.3390/molecules24142558

    Singer, S. D., Laurie, J. D., Bilichak, A., Kumar, S., & Singh, J. (2021). Genetic variation and unintended risk in the context of old and new breeding techniques. Critical Reviews in Plant Sciences40(1), 68-108. https://doi.org/10.1080/07352689.2021.1883826

    Singh, R., Dutt, S., Sharma, P., Sundramoorthy, A. K., Dubey, A., Singh, A., & Arya, S. (2023). Future of nanotechnology in food industry: Challenges in processing, packaging, and food safety. Global Challenges7(4), 2200209. https://doi.org/10.1002/gch2.202200209

    Singh, Y., & Saxena, M. K. (2022). Insights into the recent advances in nano-bioremediation of pesticides from the contaminated soil. Frontiers in Microbiology13, 982611. https://doi.org/10.3389/fmicb.2022.982611

    Sinha, D., Maurya, A. K., Abdi, G., Majeed, M., Agarwal, R., Mukherjee, R., ... & Chen, J. T. (2023). Integrated genomic selection for accelerating breeding programs of climate-smart cereals. Genes14(7), 1484. https://doi.org/10.3390/genes14071484

    Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of remote sensing in precision agriculture: A review. Remote sensing12(19), 3136. https://doi.org/10.3390/rs12193136

    Soda, N., Verma, L., & Giri, J. (2018). CRISPR-Cas9 based plant genome editing: Significance, opportunities and recent advances. Plant Physiology and Biochemistry131, 2-11. https://doi.org/10.1016/j.plaphy.2017.10.024

    Stetter, M. G., Gates, D. J., Mei, W., & Ross-Ibarra, J. (2017). How to make a domesticate. Current Biology27(17), R896-R900. https://doi.org/10.1016/j.cub.2017.06.048

    Sun, L., Lai, M., Ghouri, F., Nawaz, M. A., Ali, F., Baloch, F. S., ... & Shahid, M. Q. (2024). Modern Plant Breeding Techniques in Crop Improvement and Genetic Diversity: From Molecular Markers and Gene Editing to Artificial Intelligence—A Critical Review. Plants13(19), 2676. https://doi.org/10.3390/plants13192676

    Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture4, 58-73. https://doi.org/10.1016/j.aiia.2020.04.002

    Tamayo-Ordóñez, M. C., Espinosa-Barrera, L. A., Tamayo-Ordóñez, Y. J., Ayil-Gutiérrez, B., & Sánchez-Teyer, L. F. (2016). Advances and perspectives in the generation of polyploid plant species. Euphytica209, 1-22. https://doi.org/10.1007/s10681-016-1646-x

    Tan, Y. C., Kumar, A. U., Wong, Y. P., & Ling, A. P. K. (2022). Bioinformatics approaches and applications in plant biotechnology. Journal of Genetic Engineering and Biotechnology20(1), 106. https://doi.org/10.1186/s43141-022-00394-5

    Tan, Y. C., Kumar, A. U., Wong, Y. P., & Ling, A. P. K. (2022). Bioinformatics approaches and applications in plant biotechnology. Journal of Genetic Engineering and Biotechnology20(1), 106.

    Tripathi, N., Tripathi, M. K., Tiwari, S., & Payasi, D. K. (2022). Molecular breeding to overcome biotic stresses in soybean: update. Plants11(15), 1967. https://doi.org/10.3390/plants11151967

    Tripathy, J., Mishra, A., Pandey, M., Thakur, R. R., Chand, S., Rout, P. R., & Shahid, M. K. (2024). Advances in Nanoparticles and Nanocomposites for Water and Wastewater Treatment: A Review. Water16(11), 1481. https://doi.org/10.3390/w16111481

    Udage, A. C. (2021). Introduction to plant mutation breeding: Different approaches and mutagenic agents. Journal of Agricultural Sciences (Sri Lanka)16(3). https://doi.org/10.4038/jas.v16i03.9472

    Virk, V., Deepak, H., Taneja, K., Srivastava, R., & Giri, S. (2024). Amelioration in nanobiosensors for the control of plant diseases: current status and future challenges. Frontiers in Nanotechnology6, 1310165. https://doi.org/10.3389/fnano.2024.1310165

    Vishwakarma, M. K., Yadav, P. S., Rai, V. P., Kumar, U., & Joshi, A. K. (2022). Molecular markers and genomics assisted breeding for improving crop plants. In Relationship Between Microbes and the Environment for Sustainable Ecosystem Services, Volume 1 (pp. 303-334). Elsevier. https://doi.org/10.1016/B978-0-323-89938-3.00014-1

    Wang, D., Saleh, N. B., Byro, A., Zepp, R., Sahle-Demessie, E., Luxton, T. P., ... & Su, C. (2022). Nano-enabled pesticides for sustainable agriculture and global food security. Nature nanotechnology17(4), 347-360. https://doi.org/10.1038/s41565-022-01082-8

    Watson, A., Ghosh, S., Williams, M. J., Cuddy, W. S., Simmonds, J., Rey, M. D., ... & Hickey, L. T. (2018). Speed breeding is a powerful tool to accelerate crop research and breeding. Nature plants4(1), 23-29. https://doi.org/10.1038/s41477-017-0083-8

    Williams, K., Subramani, M., Lofton, L. W., Penney, M., Todd, A., & Ozbay, G. (2024). Tools and Techniques to Accelerate Crop Breeding. Plants13(11), 1520. https://doi.org/10.3390/plants13111520

    Wright, D. (2015). Article commentary: the genetic architecture of domestication in animals. Bioinformatics and biology insights9, BBI-S28902. https://doi.org/10.4137/BBI.S28902

    Wu, K., Xu, C., Li, T., Ma, H., Gong, J., Li, X., ... & Hu, X. (2023). Application of Nanotechnology in Plant Genetic Engineering. International Journal of Molecular Sciences24(19), 14836. https://doi.org/10.3390/ijms241914836

    Xu, Y., Luo, H., Zhang, H., Yung, W. S., Li, M. W., Lam, H. M., & Huang, C. (2023). Feeding the world using speed breeding technology. Trends in Plant Science28(3), 372-373. https://doi.org/10.1016/j.tplants.2022.12.003

    Yadav, R. K., Tripathi, M. K., Tiwari, S., Tripathi, N., Asati, R., Patel, V., ... & Payasi, D. K. (2023). Breeding and genomic approaches towards development of fusarium wilt resistance in chickpea. Life13(4), 988. https://doi.org/10.3390/life13040988

    Yadav, R. K., Tripathi, M. K., Tiwari, S., Tripathi, N., Asati, R., Chauhan, S., ... & Payasi, D. K. (2023). Genome editing and improvement of abiotic stress tolerance in crop plants. Life13(7), 1456. https://doi.org/10.3390/life13071456

    Yadav, A., Yadav, K., & Abd-Elsalam, K. A. (2023). Nanofertilizers: types, delivery and advantages in agricultural sustainability. Agrochemicals2(2), 296-336. https://doi.org/10.3390/agrochemicals2020019

    Yadav, A., Yadav, K., Ahmad, R., & Abd-Elsalam, K. A. (2023). Emerging frontiers in nanotechnology for precision agriculture: advancements, hurdles and prospects. Agrochemicals2(2), 220-256. https://doi.org/10.3390/agrochemicals2020016

    Yali, W., & Mitiku, T. (2022). Mutation breeding and its importance in modern plant breeding. Journal of Plant Sciences10(2), 64-70. https://doi.org/10.11648/j.jps.20221002.13

    Yang, Y., Saand, M. A., Huang, L., Abdelaal, W. B., Zhang, J., Wu, Y., ... & Wang, F. (2021). Applications of multi-omics technologies for crop improvement. Frontiers in Plant Science, 12, 563953. https://doi.org/10.3389/fpls.2021.563953

    Yoon, J. B., Kwon, S. W., Ham, T. H., Kim, S., Thomson, M., Hechanova, S. L., ... & Park, Y. (2015). Marker-assisted breeding. Current Technologies in Plant Molecular Breeding: A Guide Book of Plant Molecular Breeding for Researchers, 95-144. https://doi.org/10.1007/978-94-017-9996-6_4

    Zain, M., Ma, H., Nuruzzaman, M., Chaudhary, S., Nadeem, M., Shakoor, N., ... & Ahamad, T. (2023). Nanotechnology based precision agriculture for alleviating biotic and abiotic stress in plants. Plant Stress10, 100239. https://doi.org/10.1016/j.stress.2023.100239

    Zain, M., Ma, H., Nuruzzaman, M., Chaudhary, S., Nadeem, M., Shakoor, N., ... & Ahamad, T. (2023). Nanotechnology based precision agriculture for alleviating biotic and abiotic stress in plants. Plant Stress10, 100239. https://doi.org/10.1016/j.envres.2024.119722

    Zha, J. (2020, December). Artificial intelligence in agriculture. In Journal of Physics: Conference Series (Vol. 1693, No. 1, p. 012058). IOP Publishing. https://doi.org/10.1088/1742-6596/1693/1/012058

    Zhu, C., Bortesi, L., Baysal, C., Twyman, R. M., Fischer, R., Capell, T., ... & Christou, P. (2017). Characteristics of genome editing mutations in cereal crops. Trends in Plant Science, 22(1), 38-52. https://doi.org/10.1016/j.tplants.2016.08.009

    Zhu, C., Bortesi, L., Baysal, C., Twyman, R. M., Fischer, R., Capell, T., ... & Christou, P. (2017). Characteristics of genome editing mutations in cereal crops. Trends in Plant Science22(1), 38-52. https://doi.org/10.1007/s11051-017-4056-7