A key component of sustainable development aimed at addressing poverty, malnutrition and improving livelihoods is crop genetic diversity. It is necessary that plant genetic diversity must be conserved and utilized for meeting future growth requirements and ensuring food security directly impacting health and environmental sustainability. It is crucial to conserve and utilize crop genetic diversity to develop new plant gene combinations for crop varieties suited to diverse agricultural conditions and capable of withstanding environmental stresses. Crop genetic resources, stored in gene banks and other repositories are invaluable reservoirs of genetic diversity, safeguarding plant species from climate change and human driven homogenization of agricultural landscapes. Understanding the distribution of genetic variation in crops is critical for preserving and harnessing that variation to address challenges posed by changing markets, climate and agricultural approaches. Lack of genetic diversity limits breeding advancement and the ability to enhance crop productivity and quality. As the global climate changes, ensuring availability and access to diverse genetic resources is essential to enable worldwide farming industry to adapt and satisfy the growing demands of expanding population. Sustainable development and food security depend on the conservation and exploitation of agricultural biodiversity, integrating genetic diversity and crop improvement as inalienable strategies for sustainable agriculture and the conservation of biodiversity.
genetic diversity, crop improvement, genetic resources, PGR conservation
Ajayi, S. S. (2019). Principles for the management of protected areas. Wildlife Conservation in Africa, 85–93. https://doi.org/10.1016/B978-0-12-816962-9.00009-0
Asati, R., Tripathi, M. K., Tiwari, S., Yadav, R. K., & Tripathi, N. (2022). Molecular Breeding and Drought Tolerance in Chickpea. Life, 12(11), 1846. https://doi.org/10.3390/life12111846
Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E. D., & Schroeder, J. I. (2019). Genetic strategies for improving crop yields. Nature, 575(7781), 109-118.
https://doi.org/10.1038/s41586-019-1679-0
Begna, T. (2021). Role and economic importance of crop genetic diversity in food security. International Journal of Agricultural Science and Food Technology, 7(1), 164-169. https://dx.doi.org/10.17352/2455-815X.000104
Bhandari, H. R., Bhanu, A. N., Srivastava, K., Singh, M. N., & Shreya, H. A. (2017). Assessment of genetic diversity in crop plants - an overview. Advances in Plants & Agriculture Research, 7(3), 279-286. https://doi.org/10.15406/apar.2017.07.00255
Bhatia, S. (2015). Application of Plant Biotechnology. Modern Applications of Plant Biotechnology in Pharmaceutical Sciences, 157–207. https://doi.org/10.1016/B978-0-12-802221-4.00005-4
Birader, K. (2023). Genetic Diversity and the Adaptation of Species to Changing Environments. Journal of Biodiversity & Endangered Species. 11(3).
Borlaug, N. E. (1983). Contributions of conventional plant breeding to food production. Science 219(4585), 689-693. https://doi.org/10.1126/science.219.4585.689
Borrell, A. K., Hammer, G. L., & Douglas, A. C. (2000). Does maintaining green leaf area in sorghum improve yield under drought? I. Leaf growth and senescence. Crop science 40(4), 1026-1037. https://doi.org/10.2135/cropsci2000.4041026x
Borrell, A. K., Mullet, J. E., George-Jaeggli, B., van Oosterom, E. J., Hammer, G. L., Klein, P. E., & Jordan, D. R. (2014). Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. Journal of experimental botany, 65(21), 6251-6263. https://doi.org/10.1093/jxb/eru232
Borrell, K., Hammer, G. L., & Henzell, R. G. (2000). Does maintaining green leaf area in sorghum improve yield under drought? II. Dry matter production and yield. Crop science, 40(4), 1037-1048. https://doi.org/10.2135/cropsci2000.4041037x
Bouis, H. E. (2000). The Role of Biotechnology for Food Consumers in Developing Countries. In: Qaim M, Krattiger AF, von Braun J (eds) Agricultural Biotechnology in Developing Countries. Springer, Boston, MA pp 189-213. https://doi.org/10.1007/978-1-4757-3178-1_11
Brar, D. (2005). Broadening the genepool and exploiting heterosis in cultivated rice, In: Rice is life: scientific perspectives for the 21st Century Toriyama K, Heong KL, Hardy B (eds) Proceedings of the World Rice Research Conference, Tokyo and Tsukuba, Japan, 4–7 November 2004
Brown, W. L. (1983) Genetic diversity and genetic vulnerability—an appraisal. Economic botany, 37, 4–12. https://doi.org/10.1007/BF02859301
Byrne, P. F. (2023). Plant breeding for climate change: Opportunities for adaptation and mitigation. In: Volk GM, Moreau TL, Byrne PF. Conserving and Using Climate-Ready Plant Collections. Fort Collins, Colorado: Colorado State University. Available from: https://colostate.pressbooks.pub/climatereadyplantcollections/chapter/plant-breeding-for-climate-change/
Caballero, A., & García-Dorado, A. (2013). Allelic diversity and its implications for the rate of adaptation. Genetics, 195(4), 1373-84. https://doi.org/10.1093/genetics/195.4.NP
Chateil, C., Goldringer, I., Tarallo, L., Kerbiriou, C., Le Viol, I., Ponge, J. F., & Porcher, E. (2013). Crop genetic diversity benefits farmland biodiversity in cultivated fields. Agriculture, Ecosystems & Environment, 171, 25-32. https://doi.org/10.1016/j.agee.2013.03.004
Christopher, J. T., Christopher, M. J., Borrell, A. K., Fletcher, S., & Chenu, K. (2016). Stay-green traits to improve wheat adaptation in well-watered and water-limited environments. Journal of experimental botany, 67(17), 5159-5172. https://doi.org/10.1093/jxb/erw276
Cruz-Cruz, C. A., González-Arnao, M. T., & Engelmann, F. (2013). Biotechnology and Conservation of Plant Biodiversity. Resources, 2(2), 73-95. https://doi.org/10.3390/resources2020073
Deutsch, C. A., Tewksbury, J. J., Tigchelaar, M., Battisti, D. S., Merrill, S. C., Huey, R. B., & Naylor, R. L. (2018). Increase in crop losses to insect pests in a warming climate. Science, 361(6405), 916-919. https://doi.org/10.1126/science.aat3466
Dowla, M., Edwards, I., O'Hara, G., Islam, S., & Ma, W. (2018). Developing Wheat for Improved Yield and Adaptation under a Changing Climate: Optimization of a Few Key Genes. Engineering, 4(4), 514-522. https://doi.org/10.1016/j.eng.2018.06.005
Du, F. Toit. (1989). Components of Resistance in Three Bread Wheat Lines to Russian Wheat Aphid (Homoptera: Aphicide) in South Africa. Journal of Economic Entomology, 82(6), 1779–1781. https://doi.org/10.1093/jee/82.6.1779
Dudley, J. W., & Frey, K. (1994). Plant breeding-a vital part of improvement in crop yields, quality and production efficiency. Historical perspectives in plant sciences. Iowa State University Press, Ames, 163-177.
Ehlers, J. D., & Hall, A. E. (1998). Heat tolerance of contrasting cowpea lines in short and long days. Field Crops Research, 55(1-2), 11-21. https://doi.org/10.1016/S0378-4290(97)00055-5
Elliott, L. J. (2002). The effects of the decline of genetic biodiversity on the prosperity and well-being of mankind. Genetics in human affairs. https://projects.ncsu.edu/cals/course/gn301/GeneticBiodiversity.html
Esquinas-Alcázar, J. T. (1993). Plant genetic resources. In: Hayward MD, Bosemark NO, Romagosa I, Cerezo M (eds) Plant Breeding. Plant Breeding Series. Springer, Dordrecht, pp 33-51. https://doi.org/10.1007/978-94-011-1524-7_4
Fassil, H., Guarino, L., Sharrock, S., Mal, B., Hodgkin, T., & Iwanaga, M. (2000). Diversity for Food Security: Improving Human Nutrition through Better Evaluation, Management, and Use of Plant Genetic Resources. Food and nutrition bulletin, 21(4), 497–502. https://doi.org/10.1177/156482650002100429
Ford-Lloyd, B. V. (2003) Biodiversity and Conservation | Germplasm Conservation. Encyclopedia of Applied Plant Sciences, 49–56. https://doi.org/10.1016/B0-12-227050-9/00193-9
Frankel, O. H., & Bennett, E. (1970) Genetic resources in plants-their exploration and conservation. Genetic resources in plants-their exploration and conservation.
Fu, Y. B. (2015). Understanding crop genetic diversity under modern plant breeding. Theoretical and Applied Genetics, 128, 2131–2142. https://doi.org/10.1007/s00122-015-2585-y
Gaikwad, K. B., Rani, S., Kumar, M., Gupta, V., Babu, P. H., Bainsla, N. K., & Yadav, R. (2020). Enhancing the Nutritional Quality of Major Food Crops through Conventional and Genomics-Assisted Breeding. Frontiers in Nutrition, 7, 533453. https://doi.org/10.3389/fnut.2020.533453
Gale, M. D., Youssefian, S., & Russell, G. E. (1985). Progress in plant breeding. Dwarfing Genes in Wheat (Russell GE, ed.). Butterworths Press, London, pp 1-35.
Gepts, P. (2006). Plant genetic resources conservation and utilization: the accomplishments and future of a societal insurance policy. Crop science, 46(5), 2278-2292. https://doi.org/10.2135/cropsci2006.03.0169gas
Gholami, A. M., Hahne, H., Wu, Z., Auer, F. J., Meng, C., Wilhelm, M., & Kuster, B. (2013). Global proteome analysis of the NCI-60 cell line panel. Cell Reports, 4(3), 609-620. https://doi.org/10.1016/j.celrep.2013.07.018
Gill, B. S., Sharma, H. C., Raupp, W. J., Browder, L. E., Hatchett, J. H., & Harvey, T. L. (1985). Evaluation of Aegilops species for resistance to wheat powdery mildew, wheat leaf rust, Hessian fly, and greenbug. Plant Disease, 69(4), 314-316.
Govindaraj, M., Vetriventhan, M., & Srinivasan, M. (2015). Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetics research international, 431487. https://doi.org/10.1155/2015/431487
Graham, R., Senadhira, D., Beebe, S., Iglesias, C., & Monasterio, I. (1999). Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field crops research, 60(1-2), 57-80. https://doi.org/10.1016/S0378-4290(98)00133-6
Hajjar, R., & Hodgkin, T. (2007). The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica, 156, 1–13 https://doi.org/10.1007/s10681-007-9363-0
Hasan, M., & Abdullah, H. M. (2015). Plant Genetic Resources and Traditional Knowledge: Emerging Needs for Conservation. In: Salgotra R, Gupta B (eds) Plant Genetic Resources and Traditional Knowledge for Food Security. Springer, Singapore. Pp 105-120. https://doi.org/10.1007/978-981-10-0060-7_6
Hawtin, G., Iwanaga, M., & Hodgkin, T. (1997). Genetic resources in breeding for adaptation. In: Tigerstedt PMA (eds) Adaptation in Plant Breeding. Developments in Plant Breeding, vol 4. Springer, Dordrecht pp 277-288. https://doi.org/10.1007/978-94-015-8806-5_35
Hefferon, K. L. (2015). Nutritionally enhanced food crops; progress and perspectives. International journal of molecular sciences, 16(2), 3895-914. https://doi.org/10.3390/ijms16023895
Hoisington, D., Khairallah, M., Reeves, T., Ribaut, J. M., Skovmand, B., Taba, S., & Warburton, M. (1999). Plant genetic resources: What can they contribute toward increased crop productivity?. Proceedings of the National Academy of Sciences, 96(11), 5937–5943. https://doi.org/10.1073/pnas.96.11.5937
Hughes, A. R., Inouye, B. D., Johnson, M. T., Underwood, N., & Vellend, M. (2008). Ecological consequences of genetic diversity. Ecology letters, 11(6), 609-623. https://doi.org/10.1111/j.1461-0248.2008.01179.x
Jordan, D. R., Hunt, C. H., Cruickshank, A. W., Borrell, A. K., & Henzell, R. G. (2012). The relationship between the stay‐green trait and grain yield in elite sorghum hybrids grown in a range of environments. Crop Science, 52(3), 1153-1161. https://doi.org/10.2135/cropsci2011.06.0326
Joshi, B. K., Ghimire, K. H., Neupane, S. P., Gauchan, D., & Mengistu, D. K. (2023). Approaches and Advantages of Increased Crop Genetic Diversity in the Fields. Diversity, 15(5), 603. https://doi.org/10.3390/d15050603
Jump, A. S., Marchant, R., & Penuelas, J. (2008). Environmental change and the option value of genetic diversity. Trends in plant science, 14(1), 51-58. https://doi.org/10.1016/j.tplants.2008.10.002
Kanaka, K. K., Sukhija, N., Goli, R. J., Singh, S., Ganguly, I., Dixit, S. P., Dash, A., & Malik, A. A. (2023). On the concepts and measures of diversity in the genomics era. Current Plant Biology, 33, 100278. https://doi.org/10.1016/j.cpb.2023.100278
Kato, K., & Yamagata, H. (1988). Method for evaluation of chilling requirement and narrow-sense earliness of wheat cultivars. Japanese Journal of Breeding, 38(2), 172-186. https://doi.org/10.1270/jsbbs1951.38.172
Keneni, G., Bekele, E., Imtiaz, M., & Dagne, K. (2012). Genetic vulnerability of modern crop cultivars: causes, mechanism and remedies. International Journal of Plant Research, 2(3), 69-79. https://doi.org/10.5923/j.plant.20120203.05
Kihara, H. (1983). Time to studying and breeding wheat, as consumption of wheat flour is increasing. In Proceedings of the Sixth International Wheat Genetics Symposium: Held at Plant Germ-Plasm Institute, Faculty of Agriculture, Kyoto University, Kyoto, Japan, p 13.
Kishii, M. (2019). An Update of Recent Use of Aegilops Species in Wheat Breeding. Frontiers in Plant Science, 10, 585. https://doi.org/10.3389/fpls.2019.00585
Kniskern, J. M., & Rausher, M. D. (2006). Major-gene resistance to the rust pathogen Coleosporium ipomoeae is common in natural populations of Ipomoea purpurea. New Phytologist, 171(1), 137-44. https://doi.org/10.1111/j.1469-8137.2006.01729.x
Kunert, K., & Vorster, B. J. (2020). In search for drought-tolerant soybean: is the slow-wilting phenotype more than just a curiosity?. Journal of Experimental Botany, 71(2), 457-460. https://doi.org/10.1093/jxb/erz235
Laine, A. L. (2004). Resistance variation within and among host populations in a plant-pathogen metapopulation: implications for regional pathogen dynamics. Journal of Ecology, 92, 990–1000. https://doi.org/10.1111/j.0022-0477.2004.00925.x
Lande, R., & Shannon, S. (1996). The role of genetic variation in adaptation and population persistence in a changing environment. Evolution, 50(1), 434-437.
Lane, A., & Jarvis, A. (2007). Changes in climate will modify the geography of crop suitability: agricultural biodiversity can help with adaptation. SAT eJournal, 4(1), 1-12.
Laux, P., Jäckel, G., Tingem, R. M., & Kunstmann, H. (2010). Impact of climate change on agricultural productivity under rainfed conditions in Cameroon—A method to improve attainable crop yields by planting date adaptations. Agricultural and Forest Meteorology, 150(9), 1258-1271. https://doi.org/10.1016/j.agrformet.2010.05.008
Lopez, P. B. (1994). A new plant disease: uniformity. CABI Databases, 26(6), 41-47.
Marta, S. Lopes., Ibrahim, El-Basyoni., Peter, S. Baenziger., Sukhwinder, Singh., Conxita, Royo., Kursad, Ozbek., Husnu, Aktas., Emel, Ozer., Fatih, Ozdemir., Alagu, Manickavelu., Tomohiro, Ban., & Prashant, Vikram. (2015). Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. Journal of experimental botany, 66(12), 3477–348. https://doi.org/10.1093/jxb/erv122
Martynov, S. P., Dobrotvorskaya, T. V., & Krupnov, V. A. (2018). Analysis of the Distribution of Triticum timopheevii Zhuk. Genetic Material in Common Wheat Varieties (Triticum aestivum L.). Russian journal of genetics, 54, 166–175. https://doi.org/10.1134/S1022795418020126
Maxte, N., Guarino, L., Myer, L., & Chiwona, E. A. (2002). Towards a methodology for on-farm conservation of plant genetic resources. Genetic resources and crop evolution, 49, 31–46. https://doi.org/10.1023/A:1013896401710
Maxted, N. (2001). Ex Situ, In Situ Conservation. Encyclopedia of Biodiversity, 683–695. https://doi.org/10.1016/B0-12-226865-2/00115-2
Maxted, N., Hawkes, J. G., Ford-Lloyd, B. V., & Williams, J. T. (1997) A Practical Model for In Situ Genetic Conservation. In: Plant genetic conservation: the in-situ approach. Dordrecht: Springer Netherlands, pp 339-367.
Maxted, N., & Kell, S. P. (2003). Biodiversity and conservation | Plant Diversity, Conservation and Use. Encyclopedia of Applied Plant Sciences, 25–48. https://doi.org/10.1016/B0-12-227050-9/00001-6
Maxted, N., Tan, A., Amri, A., & Valkoun, J. (2001). In Situ Conservation. In: Maxted N, Bennett SJ (eds) Plant Genetic Resources of Legumes in the Mediterranean. Current Plant Science and Biotechnology in Agriculture, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9823-1_16
Minter, M., Nielsen, E. S., Blyth, C., Bertola, L. D., Kantar, M. B., Morales, H. E., Orland, C., Segelbacher, G., & Leigh, D. M. (2021). What Is Genetic Diversity and Why Does it Matter?. Frontiers for Young Minds, 9, 656168. http://dx.doi.org/10.3389/frym.2021.656168
Mishra, N., Tripathi, M. K., Tiwari, S., Tripathi, N., Sapre, S., Ahuja, A., & Tiwari, S. (2021). Cell Suspension Culture and In Vitro Screening for Drought Tolerance in Soybean Using Poly-Ethylene Glycol. Plants, 10(3), 517. https://doi.org/10.3390/plants10030517
Mishra, R., Tripathi, M. K., Sikarwar, R. S., Singh, Y., & Tripathi, N. (2024). Soybean (Glycine max L. Merrill): A Multipurpose Legume Shaping Our World. Plant Cell Biotechnology and Molecular Biology, 25(3-4), 17-37. https://doi.org/10.56557/pcbmb/2024/v25i3-48643
Murray, B. G. (2017). Plant Diversity, Conservation and Use. Encyclopedia of Applied Plant Sciences, 289–308. https://doi.org/10.1016/B978-0-12-394807-6.00047-2
Nassar, N. M. (2003). Cassava, Manihot esculenta Crantz genetic resources. VI. Anatomy of a diversity center. Genetics and Molecular Research, 2(2), 214-222.
Nevo, E., Beiles, A., & Ben-Shlomo, R. (1984). The Evolutionary Significance of Genetic Diversity: Ecological, Demographic and Life History Correlates. In: Mani GS (eds) Evolutionary Dynamics of Genetic Diversity. Lecture Notes in Biomathematics, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51588-0_2
Nonic, M., & Sijacic-Nikolic, M. (2019). Genetic Diversity: Sources, Threats, and Conservation. In: Leal Filho, W, Azul A, Brandli L, Ozuyar P, Wall T (eds) Life on Land. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. Pp 1-15. https://doi.org/10.1007/978-3-319-71065-5_53-1
Notter, D. R. (1999). The importance of genetic diversity in livestock populations of the future. Journal of animal science, 77(1), 61-69. https://doi.org/10.2527/1999.77161x
Offord, C. A. (2017). Germplasm Conservation. Encyclopedia of Applied Plant Sciences, 281–288. https://doi.org/10.1016/B978-0-12-394807-6.00046-0
Osborn, T. J., & Briffa, K. R. (2005). The Spatial Extent of 20th-Century Warmth in the Context of the Past 1200 Years. Science, 311(5762), 841-844. https://doi.org/10.1126/science.1120514
Paliwal, S., Tripathi, M. K., Tiwari, S., Tripathi, N., Payasi, D. K., Tiwari, P. N., Singh, K., Yadav, R. K., Asati, R., & Chauhan, S. (2023). Molecular Advances to Combat Different Biotic and Abiotic Stresses in Linseed (Linum usitatissimum L.): A Comprehensive Review. Genes. 14(7), 1461. https://doi.org/10.3390/genes14071461
Parker, M. A. (1988) Polymorphism For disease resistance in the annual legumes Amphicarpaea bracteata. Heredity, 60, 27–31. https://doi.org/10.1038/hdy.1988.5
Pingali, P. L. (2012). Green revolution: impacts, limits, and the path ahead. Proceedings of the national academy of sciences, 109(31), 12302-12308. https://doi.org/10.1073/pnas.0912953109
Plucknett, D. L., & Smith, N. J. (2014). Gene banks and the world's food. Princeton University Press.
Rajpurohit, D., & Jhang, T. (2015). In Situ and Ex Situ Conservation of Plant Genetic Resources and Traditional Knowledge. In: Salgotra R, Gupta B (eds) Plant Genetic Resources and Traditional Knowledge for Food Security. Springer, Singapore 137-162. https://doi.org/10.1007/978-981-10-0060-7_8
Ramsay, M. M., Jackson, A. D., Porley, R. D. (2000). A pilot study for the ex situ conservation of UK bryophytes. BGCI, ed. EuroGard, 52-57.
Rao, N. K. (2003). Plant genetic resources: Advancing conservation and use through biotechnology. African Journal of biotechnology, 3(2), 136–145. https://doi.org/10.5897/AJB2004.000-2025
Ray, D., Gerber, J., MacDonald, G., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature communications, 6, 5989. https://doi.org/10.1038/ncomms6989
Redden, R. (2013). New Approaches for Crop Genetic Adaptation to the Abiotic Stresses Predicted with Climate Change. Agronomy, 3, 419-432. https://doi.org/10.3390/agronomy3020419
Rosenzweig, C., Iglesias, A., Yang, X. B., Epstein, P. R., & Chivian, E. (2001). Climate Change and Extreme Weather Events; Implications for Food Production, Plant Diseases, and Pests. Global Change and Human Health, 2, 90–104 https://doi.org/10.1023/A:1015086831467
Sahu, P. K., Sao, R., Khute, I. K., Baghel, S., Patel, R. R. S., Thada, A., ... & Sharma, D. (2023). Plant Genetic Resources: Conservation, Evaluation and Utilization in Plant Breeding. In: Raina A, Wani MR, Laskar RA, Tomlekova N, Khan S (eds) Advanced Crop Improvement, Volume 2. Springer, Cham, Pp 1-45. https://doi.org/10.1007/978-3-031-26669-0_1
Salgotra, R. K., Chauhan, B. S. (2023). Genetic Diversity, Conservation, and Utilization of Plant Genetic Resources. Genes, 14(1), 174. https://doi.org/10.3390/genes14010174
Sharma, S., Schulthess, A. W., Bassi, F. M., Badaeva, E. D., Neumann, K., Graner, A., Ozkan, H., Werner, P., Knüpffer, H., & Kilian, B. (2021). Introducing beneficial alleles from plant genetic resources into the Wheat germplasm. Biology, 10(10), 982. https://doi.org/10.3390/biology10100982
Shyam, C., Tripathi, M. K., Tiwari, S., Tripathi, N., Solanki, R. S., Sapre, S., Ahuja, A., & Tiwari, S. (2021). In Vitro Production of Somaclones with Decreased Erucic Acid Content in Indian Mustard [Brassica juncea (Linn.) Czern&Coss]. Plants, 10(7), 1297. https://doi.org/10.3390/plants10071297
Singh, K., Gupta, K., Tyagi, V., & Rajkumar, S. (2020). Plant genetic resources in India: management and utilization. Vavilovskii Zhurnal Genet Selektsii, 24(3), 306-314. https://doi.org/10.18699/VJ20.622.
Snowdon, R. J., Wittkop, B., Chen, T. W., & Stahl, A. (2021) Crop adaptation to climate change as a consequence of long-term breeding. Theoretical and Applied Genetics, 134, 1613–1623. https://doi.org/10.1007/s00122-020-03729-3
South, P. F., Cavanagh, A. P., Liu, H. W., & Ort, D. R. (2019). Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science, 363(6422), eaat9077. https://doi.org/10.1126/science.aat9077
Springer, Y. P. (2007). Clinal resistance structure and pathogen local adaptation in a serpentine flax-flax rust interaction. Evolution, 61(8), 1812-1822. https://doi.org/10.1111/j.1558-5646.2007.00156.x
Strange, R. N., & Scott, P. R. (2005). Plant disease: a threat to global food security. Annual Review of Phytopathology, 43, 83-116. https://doi.org/10.1146/annurev.phyto.43.113004.133839
Suneja, Y., Gupta, A. K., & Bains, N. S. (2019). Stress Adaptive Plasticity: Aegilops tauschii and Triticum dicoccoides as Potential Donors of Drought Associated Morpho-Physiological Traits in Wheat. Frontiers in Plant Science, 10, 211. https://doi.org/10.3389/fpls.2019.00211
Swarup, S., Cargill, E. J., Crosby, K., Flagel, L., Kniskern, J., & Glenn, K. C. (2021). Genetic diversity is indispensable for plant breeding to improve crops. Crop Science, 61 (2), 839-852. https://doi.org/10.1002/csc2.20377
Thrall, P. H., Burdon, J. J., Bever, J. D. (2002). Local adaptation in the Linum marginale-Melampsora lini host-pathogen interaction. Evolution, 56(7), 1340-1351. https://doi.org/10.1111/j.0014-3820.2002.tb01448.x
Tiwari, P. N., Tiwari, S., Sapre, S., Babbar, A., Tripathi, N., Tiwari, S., & Tripathi, M. K. (2023a) Screening and Selection of Drought-Tolerant High-Yielding Chickpea Genotypes Based on Physio-Biochemical Selection Indices and Yield Trials. Life, 13(6), 1405. https://doi.org/10.3390/life13061405
Tiwari, P. N., Tiwari, S., Sapre, S., Tripathi, N., Payasi, D. K., Singh, M., Thakur, S., Sharma, M., Tiwari, S., & Tripathi, M. K. (2023b) Prioritization of Physio-Biochemical Selection Indices and Yield-Attributing Traits toward the Acquisition of Drought Tolerance in Chickpea (Cicer arietinum L.). Plants, 12(18), 3175. https://doi.org/10.3390/plants12183175
Toenniessen, G. H. (2002). Crop Genetic Improvement for Enhanced Human Nutrition. The Journal of nutrition, 132(9), 2943–2946. https://doi.org/10.1093/jn/132.9.2943S
Tripathi, N., Tripathi, M. K., Tiwari, S., & Payasi, D. K. (2022) Molecular Breeding to Overcome Biotic Stresses in Soybean: Update. Plants, 11(15), 1967. https://doi.org/10.3390/plants11151967
Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., ... & Yano, M. (2013). Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature genetics. 45(9), 1097-1102. https://doi.org/10.1038/ng.2725
Ulukan, H. (2011). Plant genetic resources and breeding: current scenario and future prospects. International Journal of Agriculture and Biology, 13(3), 447-454.
Valdez, V. A., Byrne, P. F., Lapitan, N. L., Peairs, F. B., Bernardo, A., Bai, G., & Haley, S. D. (2012). Inheritance and genetic mapping of Russian wheat aphid resistance in Iranian wheat landrace accession PI 626580. Crop Science 52(2), 676-682. https://doi.org/10.2135/cropsci2011.06.0331
Van de Wouw, M., Van Hintum, T., Kik, C., & Visser, B. (2010) Genetic diversity trends in twentieth century crop cultivars: a meta-analysis. Theoretical and applied genetics, 120, 1241–1252 https://doi.org/10.1007/s00122-009-1252-6
Visser, C., Lashmar, S. F., Van Marle-Köster, E., Poli, M. A., Allain, D. (2016). Genetic diversity and population structure in South African, French and Argentinian Angora goats from genome-wide SNP data. PloS one, 11(5), e0154353. https://doi.org/10.1371/journal.pone.0154353
Westengen, O. T., & Brysting, A. K. (2014). Crop adaptation to climate change in the semi-arid zone in Tanzania: the role of genetic resources and seed systems. Agriculture & Food Security, 3, 3. https://doi.org/10.1186/2048-7010-3-3
Yadava, D. K., Hossain, F., Choudhury, P. R., Kumar, D., Singh, A. K., Sharma, T. R., & Mohapatra, T. (2022). Crop cultivars developed through molecular breeding (Second Edition). Indian Council of Agricultural Research, New Delhi.
Yadav, R. K., Tripathi, M. K., Tiwari, S., Tripathi, N., Asati, R., Chauhan, S., Tiwari, P. N., & Payasi, D. K. (2023a). Genome Editing and Improvement of Abiotic Stress Tolerance in Crop Plants. Life, 13(7), 1456. https://doi.org/10.3390/life13071456
Yadav, R. K., Tripathi, M. K., Tiwari, S., Tripathi, N., Asati, R., Patel, V., Sikarwar, R. S., & Payasi, D. K. (2023b). Breeding and Genomic Approaches towards Development of Fusarium Wilt Resistance in Chickpea. Life, 13(4), 988. https://doi.org/10.3390/life13040988
Yunbi, X. U. (2010). Molecular Plant Breeding. International Maize and Wheat Improvement Center (CIMMIYT), Mexico DF, Mexico.