Greenhouse technology in agriculture promises a bright and sustainable future. It does not just boost crop yields; it paves the way for a more efficient and sustainable way of growing food. It helps plants produce more, enhances quality, increases the value of produce, and significantly reduces loss. Greenhouse farming enables us to grow crops year-round, regardless of seasonal variations. Greenhouses can control the humidity and temperature of the environment inside them, opening up a world of possibilities for agriculture. Farmers can overcome the challenges of a growing population and climate change affecting food production with various innovations in greenhouse farming. Greenhouse technology has transformed modern agriculture by creating controlled environments that enhance plant growth and boost crop yields. The future of greenhouse technology is not just promising; it is optimistic. Advancements in automation, artificial intelligence, and data analytics are transforming greenhouses into highly efficient and intelligent systems. Intelligent sensing, artificial intelligence, vertical farming, robotics, and data analytics will shape the next generation of greenhouses, improving efficiency, sustainability, and crop quality.
Greenhouse, Technology, Crop protection, Vertical farming, Food security
Achour, Y., Ouammi, A., & Zejli, D. (2021). Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture. Renewable and Sustainable Energy Reviews, 147, 111251.
lsrael Ahuchaogu, I., Ehiomogue, O. P., & Udoumoh, U. I. (2022). Trends in greenhouse farming technology: A review. Journal of Food, Agriculture & Environment, 19(2), 69-74.
Aznar-Sánchez, J. A., Velasco-Muñoz, J. F., López-Felices, B., & Román-Sánchez, I. M. (2020). An analysis of global research trends on greenhouse technology: towards a sustainable agriculture. International journal of environmental research and public health, 17(2), 664.
Badji, A., Benseddik, A., Bensaha, H., Boukhelifa, A., & Hasrane, I. (2022). Design, technology, and management of greenhouse: A review. Journal of Cleaner Production, 373, 133753.
Castro, A. J., López-Rodríguez, M. D., Giagnocavo, C., Gimenez, M., Céspedes, L., La Calle, A., ... & Valera, D. L. (2019). Six collective challenges for sustainability of Almería greenhouse horticulture. International journal of environmental research and public health, 16(21), 4097.
Farooq, M. S., Riaz, S., Helou, M. A., Khan, F. S., Abid, A., & Alvi, A. (2022). Internet of things in greenhouse agriculture: a survey on enabling technologies, applications, and protocols. IEEE Access, 10, 53374-53397.
Guo, B., Zhou, B., Zhang, Z., Li, K., Wang, J., Chen, J., & Papadakis, G. (2024). A Critical Review of the Status of Current Greenhouse Technology in China and Development Prospects. Applied Sciences, 14(13), 5952.
Jung, D. H.; Lee, T.S.; Kim, K.; & Park, S.H. (2022). A deep learning model to predict evapotranspiration and relative humidity for moisture control in tomato greenhouses. Agronomy, 12 (9), 2169, https://doi.org/10.3390/agronomy12092169.
Magwaza, S. T., Magwaza, L. S., Odindo, A. O., & Mditshwa, A. (2020). Hydroponic technology as decentralised system for domestic wastewater treatment and vegetable production in urban agriculture: A review. Science of the Total Environment, 698, 134154.
Maraveas, C., Karavas, C. S., Loukatos, D., Bartzanas, T., Arvanitis, K. G., & Symeonaki, E. (2023). Agricultural greenhouses: Resource management technologies and perspectives for zero greenhouse gas emissions. Agriculture, 13(7), 1464.
Maraveas, C., Karavas, C. S., Loukatos, D., Bartzanas, T., Arvanitis, K. G., & Symeonaki, E. (2023). Agricultural greenhouses: Resource management technologies and perspectives for zero greenhouse gas emissions. Agriculture, 13(7), 1464.
Nikolaou, G., Neocleous, D., Katsoulas, N., & Kittas, C. (2019). Irrigation of greenhouse crops. Horticulturae, 5(1), 7.
Oh, S., & Lu, C. (2023). Vertical farming-smart urban agriculture for enhancing resilience and sustainability in food security. The Journal of Horticultural Science and Biotechnology, 98(2), 133-140.
Omobowale, M. O. (2020). Evaluation of a low-cost greenhouse for controlled environment cultivation of sweet pepper. Arid Zone Journal of Engineering, Technology and Environment, 16(1), 28-36.
Sahdev, R. K., Kumar, M., & Dhingra, A. K. (2019). A comprehensive review of greenhouse shapes and its applications. Frontiers in Energy, 13, 427-438.
Serrano-Carreón, L., Aranda-Ocampo, S., Balderas-Ruíz, K. A., Juárez, A. M., Leyva, E., Trujillo-Roldán, M. A., ... & Galindo, E. (2022). A case study of a profitable mid-tech greenhouse for the sustainable production of tomato, using a biofertilizer and a biofungicide. Electronic Journal of Biotechnology, 59, 13-24.
Sun, W., & Chang, F. J. (2023). Empowering Greenhouse Cultivation: Dynamic Factors and Machine Learning Unite for Advanced Microclimate Prediction. Water, 15(20), 3548.
Vox, G., Teitel, M., Pardossi, A., Minuto, A., Tinivella, F., & Schettini, E. (2010). Sustainable greenhouse systems. Sustainable agriculture: technology, planning and management, 14.
Wayua, F. O., Ochieng, V. O., Kirigua, V., & Wasilwa, L. (2020). Challenges in greenhouse crop production by smallholder farmers in Kisii County, Kenya.