The agricultural sector faces unprecedented challenges in the twenty-first century, primarily driven by exponential population growth and accelerating climate change impacts. These challenges manifest through various environmental stresses, with abiotic factors emerging as critical constraints to global agricultural productivity, affecting over 60% of agricultural land worldwide. The increasing frequency and intensity of environmental stresses, particularly drought, salinity, and temperature extremes, significantly impact crop yield and stability, with estimated annual losses exceeding $100 billion globally. Traditional breeding approaches, while valuable, have shown limitations in addressing these complex environmental challenges. The integration of conventional breeding with advanced biotechnological tools, including marker-assisted selection (MAS), quantitative trait loci (QTL) mapping, genomic selection, and CRISPR-Cas9 gene editing technology, offers promising solutions for developing climate-resilient crops. This chapter examines the multifaceted nature of abiotic stresses and presents a comprehensive framework for integrating traditional and modern breeding approaches to enhance crop resilience and productivity under stress conditions. Recent advances in high-throughput phenotyping and genomic technologies have revolutionized our understanding of stress tolerance mechanisms and accelerated the development of resilient crop varieties.
Abiotic stress tolerance, Breeding, Stress adaptation, Climate change, Climate resilience, Crop improvement, CRISPR-Cas9, Genomic selection, Molecular integrated breeding approaches, Phenomics
Abe, H., Urao, T. & Shinozaki, K. (2003). Transcriptional activators in abscisic acid signalling. The Plant Cell, 15(1), 63-78.
Ahuja, A., Kitchlu, S. K., Bakshi, S. K., Tripathi, M.K. & Tiwari, G. (2016a). Volatile terpenoid spectrum of essential oil of micropropagated and naturally grown plants in cotton lavender (Santolina chamaecyparissus L.). International Journal of Agriculture Sciences, 8(53), 2718-2720.
Ahuja, A., Tripathi, M.K. & Singh, S.P. (2016b). Plant cell cultures – an efficient resource for the production of biologically important metabolites: recent developments-a review. Progressive Research. 11(1), 1-8.
Ahuja, A., Sharma, M., Mallubhotla, S., Tripathi, M. K. & Singh, S. P. (2017). Application of bioreactor system for high throughput propagation of plants of medicinal importance-some case studies. Frontiers in Crop Improvement, 5 (1), 7-11.
Ahuja, A., Tripathi, M.K., Tiwari, S., Tripathi, N., Tiwari, G., Mishra, N., Bhargav, S. & Tiwari, S. (2021). Recent advancements on callus and cell suspension cultures: An effectual reserve for the production of pharmaceutically significant metabolites. In Current Aspects in Pharmaceutical Research and Development Vol. 6 (pp. 96–111). Book Publisher International (a part of SCIENCEDOMAIN International). https://doi.org/10.9734/bpi/caprd/v6/2260C
Anderson, R.M., Wilson, K.A. & Thompson, M.J. (2023). Advancing climate-smart agriculture: implementation strategies and challenges. Nature Agriculture, 4(2), 156-169.
Aremu, A.O., Stirk, W.A. & Van Staden, J. (2020). Plant growth regulators in agriculture: Current status and future prospects. Plant Cell Reports, 39(9), 1049-1061.
Asati, R., Tripathi, M.K., Tiwari, S., Yadav, R.K. & Tripathi, N. (2022). Molecular breeding and drought tolerance in chickpea. Life, 2022; 12(11), :1846. https://doi.org/10.3390/life12111846
Asati, R., Tripathi, M.K., Yadav, R.K., Tripathi, N., Sikarwar, R.S.& Tiwari, P. N. (2024). Investigation of drought stress on chickpea (Cicer arietinum l.) genotypes employing various physiological enzymatic and non-enzymatic biochemical parameters. Plants, 13(19), 2746. https://doi.org/10.3390/plants13192746
Bakır, M., Uncuoğlu, A.A., Özmen, C.Y., Baydu, F.Y., Kazan, K., Kibar, U., Schlauch, K., Cushman, J.C. & Ergül, A., (2023). Expression profiling of salt-and drought-stress responsive genes in wild barley (Hordeum spontaneum L.). DOI: 10.20944/preprints202307. 0178.v1
Bankole, S.A., Osho, A. & Joda, A.O. (2017). Drought stress response in agricultural crops: A physiological and molecular perspective. Journal of Plant Physiology, 214, 42-53.
Barik, D., Acharya, L. & Mukherjee, A.K. (2019). Climate-smart agriculture: principles and applications. Frontiers in Sustainable Food Systems, 3, 56.
Bellard, C., Bertelsmeier, C. & Leadley, P. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters, 15(4), 365-377.
Bray, E.A., Bailey-Serres, J. & Weretilnyk, E. (2000). Responses to abiotic stresses. Biochemistry and Molecular Biology of Plants, 1158-1203.
Bulgari, R., Franzoni, G. & Ferrante, A. (2019). Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy, 9(6), 306.
Chandra, A., Dubey, A. & Kumar, P. (2004). Molecular approaches for genetic improvement of abiotic stress tolerance in plants. Plant Biotechnology Journal, 2(1), 1-16.
Choudhary, M.L., Tripathi, M.K., Gupta, N., Tiwari, S., Tripathi, N., Parihar, P., et al. (2021a). Screening of pearl millet [Pennisetum glaucum (L.) R. Br.] germplasm lines against drought tolerance based on biochemical traits. Curr. J Appl. Sci. Technol., 40(23), 1-12.
Choudhary, M.L., Tripathi, M.K., Tiwari, S., Pandya, R.K., Gupta, N., Tripathi, N., et al. (2021b). Screening of pearl millet [Pennisetum glaucum (L.) R. Br.] germplasm lines for drought tolerance based on morpho-physiological traits and SSR markers. Curr. J Appl. Sci. Technol., 40(5), 46-63.
Chen, Y., Wang, X., & Zhang, L. (2023). CRISPR-based technologies for crop improvement under climate change. Nature Biotechnology, 41(3), 324-336.
FAO. (2023). The state of food security and nutrition in the world 2023. Rome: Food and Agriculture Organization of the United Nations.
Gao, H., Li, Y. & Wang, J. (2023). Artificial intelligence in agriculture: applications for climate resilience. Science, 379(6634), 789-794.
Ghandi, A., Powell, I.B., Howes, T., Chen, X.D. & Adhikari, B. (2012). Effect of shear rate and oxygen stresses on the survival of Lactococcus lactis during the atomization and drying stages of spray drying: a laboratory and pilot scale study. Journal of Food Engineering, 113(2), pp.194-200.
Geilfus, C.M., Mühling, K.H. & Kaiser, H. (2019). Crop stress management and global food security. Annual Review of Plant Biology, 70, 677-701.
IPCC (2023). Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland.
Javid, M.G., Sorooshzadeh, A., Moradi, F., Modarres Sanavy, S.A.M. & Allahdadi, I. (2011). The role of phytohormones in alleviating salt stress in crop plants. Australian journal of crop science, 5(6), pp.726-734.
Johnson, M.P., Smith, R.B. & Wilson, K.A. (2023). Agricultural innovation for climate adaptation. Nature Climate Change, 13(6), 542-553.
Hasan, M.B., Mahi, M., Hassan, M.K. & Bhuiyan, A.B. (2021). Impact of COVID-19 pandemic on stock markets: Conventional vs. Islamic indices using wavelet-based multi-timescales analysis. The North American Journal of Economics and Finance, 58, p.101504.
Kumar, A., Singh, S. & Patel, D. (2023). Next-generation breeding technologies for climate resilience. Trends in Plant Science, 28(7), 687-701.
Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., Trisos, C., Romero, J., Aldunce, P., Barret, K. & Blanco, G., et al. (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change, doi:10.59327/IPCC/AR6-9789291691647.
Li, X., Zhang, Y. & Wang, Q. (2023). Drought-resistant crop development using gene editing. Nature Plants, 9(5), 567-580.
Mishra, N., Tripathi, M. K., Tiwari, S., Tripathi, N., Sapre, S., Ahuja, A., & Tiwari, S. (2021a). Cell suspension culture and in vitro screening for drought tolerance in soybean using poly-ethylene glycol. Plants, 10 (3), 517. https://doi.org/10.3390/plants10030517
Mishra, N., Tripathi, M.K., Tiwari, S., Tripathi, N., Gupta, N. & Sharma, A. (2021b). Morphological and physiological performance of Indian soybean [Glycine max (L.) Merrill] genotypes in respect to drought. Legume Res. LR-4550.
Mishra, N., Tripathi, M.K., Tripathi, N., Tiwari, S., Gupta, N., Sharma, A.& Shrivastav, M.K. (2021c). Changes in biochemical and antioxidant enzymes activities play significant role in drought tolerance in soybean. Int. J. Agric. Technol, 17, 1425–1446.
Mishra, N., Tripathi, M. K., Tripathi, N., Tiwari, S., Gupta, N., Sharma, A. & Shrivastav, M. K. (2021d). Role of biochemical and antioxidant enzymes activities in drought tolerance in soybean: a recent study. In Current Topics in Agricultural Sciences Vol. 3 (pp. 102–119). Book Publisher International (a part of SCIENCEDOMAIN International). https://doi.org/10.9734/bpi/ctas/v3/2117C
Mishra, N., Tripathi, M.K., Tripathi, N., Tiwari, S., Gupta, N.& Sharma, A. (2021e). Validation of drought tolerance gene-linked microsatellite markers and their efficiency for diversity assessment in a set of soybean genotypes. Curr. J. Appl. Sci. Technol, 40, 48–57.
Mishra, N., Tripathi, M. K., Tiwari, S., Tripathi, N., & Trivedi, H. K. (2022a). Morphological and molecular screening of soybean genotypes against yellow mosaic virus disease. Legume Research, 45(10), 1309-1316.
Mishra, N., Tripathi, M. K., Tiwari, S., Tripathi, N., Gupta, N., Sharma, A., Solanki, R. S., & Tiwari, S. (2022b). Characterization of soybean genotypes on the basis of yield attributing traits and SSR molecular markers. In Innovations in Science and Technology Vol. 3 (pp. 87–106). Book Publisher International (a part of SCIENCE DOMAIN International). https://doi.org/10.9734/bpi/ist/v3/2471C
Mishra, R., Tripathi, M. K., Sikarwar, R. S., Singh, Y., & Tripathi, N. (2024). Soybean (Glycine max L. Merrill): A multipurpose legume shaping our world. Plant Cell Biotechnology and Molecular Biology, 25(3–4), 17–37. https://doi.org/10.56557/pcbmb/2024/v25i3-48643
Meuwissen, T., Hayes, B. & Goddard, M. (2023). Genomic selection for climate adaptation in agriculture. Nature Reviews Genetics, 24(5), 312-326.
Nakashima, K., Ito, Y. & Yamaguchi-Shinozaki, K. (2007). Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 149(1), 88-95.
Paliwal, S., Tripathi, M.K., Tiwari, S., Tripathi, N., Payasi, D.K., Tiwari, P.N., Singh, K., Yadav, R.K., Asati, R. & Chauhan, S. (2023). Molecular advances to combat different biotic and abiotic stresses in linseed (Linum usitatissimum L.): A comprehensive review. Genes, 14(7), 1461. https://doi.org/10.3390/genes14071461
Park, J.S., O'Brien, J., Cai, C.J., Morris, M.R., Liang, P. & Bernstein, M.S. (2023). Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th annual ACM symposium on user interface software and technology (pp. 1-22).
Rahman, M., Terano, HJR, Rahman, N., Salamzadeh, A.& Rahaman, S. (2023). ChatGPT and Academic Research: A review and recommendations based on practical examples. Journal of Education, Management and Development Studies, 3(1), pp.1-12.
Robson, J.K., Ferguson, J.N., McAusland, L., Atkinson, J.A., Tranchant-Dubreuil, C., Cubry, P., Sabot, F., Wells, D.M., Price, A.H., Wilson, Z.A. & Murchie, E.H. (2023). Chlorophyll fluorescence-based high-throughput phenotyping facilitates the genetic dissection of photosynthetic heat tolerance in African (Oryza glaberrima) and Asian (Oryza & sativa) rice. Journal of Experimental Botany, 74(17), pp.5181-5197.
Rosenzweig, C., Elliott, J. & Deryng, D. (2014). Assessing agricultural risks of climate change in the 21st century. PNAS, 111(9), 3268-3273.
Sharma, A., Tripathi, M.K., Tiwari, S., Gupta, N., Tripathi, N.& Mishra N. (2021). Evaluation of soybean (Glycine max L.) genotypes on the basis of biochemical contents and anti-oxidant enzyme activities. Legume Res. 44, LR-467.
Shamsudin, N.A.A., Swamy, B.M., Ratnam, W., Sta. Cruz, M.T., Raman, A. & Kumar, A. (2016). Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC Genetics, 17, pp.1-14.
Seki, M., Kamei, A. & Shinozaki, K. (2003). Molecular responses to drought, salinity and frost: common and different paths for plant protection. Current Opinion in Biotechnology, 14(2), 194-199.
Sistu, R., Tiwari, S., Tripathi, M.K., Singh, S., Gupta, N., Tripathi, N. et al. (2023). Effect of different biochemical parameters and antioxidant enzymes activities on drought indices in chickpea (Cicer arietinum L.). Legume Res. doi: 10.18805/LR-5204.
Smith, B.E., (2023). Evaluating the genetic and phenotypic responses of Camelina sativa to heat stress Doctoral dissertation, Montana State University-Bozeman, College of Agriculture.
Sulmon, C., Van Baaren, J., Cabello-Hurtado, F., Gouesbet, G., Hennion, F., Mony, C., Renault, D., Bormans, M., El Amrani, A., Wiegand, C. & Gérard, C. (2015). Abiotic stressors and stress responses: What commonalities appear between species across biological organization levels. Environmental Pollution, 202, pp.66-77.
Suzuki, N., Rivero, R.M., Shulaev, V., Blumwald, E. & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203(1), pp.32-43.
Tiwari, P.N., Tiwari, S., Sapre, S., Babbar, A., Tripathi, N., Tiwari, S.& Tripathi, M.K. (2023a). Screening and selection of drought-tolerant high-yielding chickpea genotypes based on physio-biochemical selection indices and yield trials. Life. 13(6):1405. https://doi.org/10.3390/life13061405
Tiwari, P.N., Tiwari, S., Sapre, S., Tripathi, N., Payasi, D.K., Singh, M., Thakur. S., Sharma, M., Tiwari, S. & Tripathi, M.K. (2023b). Prioritization of physio-biochemical selection indices and yield-attributing traits toward the acquisition of drought tolerance in chickpea (Cicer arietinum L.). Plants. 12(18):3175. https://doi.org/10.3390/plants12183175
Tiwari, P.N., Tiwari, S., Sapre, S., Babbar, A., Tripathi, N., Tiwari, S. & Tripathi, M.K. (2023c). Prioritization of microsatellite markers linked with drought tolerance associated traits in chickpea (Cicer arietinum L.) Legume Research. 46 (11):1422-1430.
Thompson, R.A., Adams, H.D., Breshears, D.D., Collins, A.D., Dickman, L.T., Grossiord, C., Manrique‐Alba, À., Peltier, D.M., Ryan, M.G., Trowbridge, A.M.& McDowell, N.G. (2023). No carbon storage in growth-limited trees in a semi-arid woodland. Nature Communications, 14(1), p.1959.
Tripathi, M. K., Tripathi, N., Tiwari, S., Mishra, N., Sharma, A., Tiwari, S. & Singh, S. (2023). Identification of Indian soybean (Glycine max [L.] Merr.) genotypes for drought tolerance and genetic diversity analysis using SSR markers. Scientist, 3, 31-46. https://doi.org/10.5281/zenodo.7697640
Tripathi, N., Tripathi, M. K., Tiwari, S., & Payasi, D. K. (2022). Molecular breeding to overcome biotic stresses in soybean: update. Plants, 11(15), 1967. https://doi.org/10.3390/plants11151967
Tripathi, M. K., Mishra, N., Tiwari, S., Shyam, C., Singh, S. & Ahuja, A. (2019). Plant tissue culture technology: sustainable option for mining high value pharmaceutical compounds. International Journal of Current Microbiology and Applied Sciences, 8(02), 1002–1010. https://doi.org/10.20546/ijcmas.2019.802.116
Uikey, D. S., Tiwari, G., Tripathi, M. K. & Patel, R. P. (2014). Secondary metabolite production of reserpine and ajmalicine in Rauwolfia serpentina (L.) Benth. through callus and cell suspension culture. International Journal of Indigenous Medicinal Plants, 47(2),1633-1646.
United Nations. (2023). World population prospects 2023: Summary of results. UN Department of Economic and Social Affairs, Population Division.
Wang, W., Vinocur, B. & Altman, A. (2023). Plant responses to drought, salinity and extreme temperatures. Trends in Plant Science, 28(4), 405-412.
Xu, D., de Ugarte Postigo, A., Leloudas, G., Krühler, T., Cano, Z., Hjorth, J., Malesani, D., Fynbo, J.P.U., Thöne, C.C., Sánchez-Ramírez, R. & Schulze, S. (2013). Discovery of the broad-lined Type Ic SN 2013cq associated with the very energetic GRB 130427A. The Astrophysical Journal, 776(2), p.98.
Yadav, P.K., Singh, A.K., Tripathi, M.K., Tiwari, S.& Rathore J. (2022a). Morpho-physiological characterization of maize (Zea mays L.) genotypes against drought. Biol. Forum., 14(2):0975-1130.
Yadav, P.K., Singh, A.K., Tripathi, M.K., Tiwari, S., Yadav, S.K.& Tripathi, N. (2022b). Morpho-physiological and molecular characterization of maize (Zea mays L.) genotypes for drought tolerance. Eur. J Appl. Sci. 10(6), 65-87.
Yadav, P.K., Singh, A.K., Tripathi, M.K., Tiwari, S., Yadav, S.K., Solanki, R.S., et al. (2022c). Assessment of maize (Zea mays L.) genotypes on the basis of biochemical contents in respect to drought. Pharma Innov J. 11(6), 1996-2002.
Yadav, P.K, Tripathi, M.K., Tiwari, S., Chauhan, S., Tripathi, N., Sikarwar, R.S., et al. (2023c). Biochemical characterization of parental inbred lines and hybrids of maize (Zea mays L.) under different irrigation conditions. Int. J Plant Soil Sci., 35(18), 1743-62.
Yadav, R.K., Tripathi, M.K., Tiwari, S., Tripathi, N., Asati, R., Patel, V., Sikarwar, R.S.& Payasi, DK. (2023b). Breeding and genomic approaches towards development of fusarium wilt resistance in chickpea. Life.,13(4), 988. https://doi.org/10.3390/life13040988
Yadav, R. K., Tripathi, M. K., Tiwari, S., Tripathi, N., Asati, R., Chauhan, S., Tiwari, P. N., & Payasi, D. K. (2023c). Genome editing and improvement of abiotic stress tolerance in crop plants. Life, 13(7), 1456. https://doi.org/10.3390/life13071456
Zhang, H., Li, Y., & Zhu, J.K. (2022). Developing climate-resilient crops: improving plant tolerance to multiple abiotic stresses. Nature Reviews Genetics, 23(8), 492-507.
Zhang, X., Davidson, E.A. & Zou, T. (2023). Sustainable intensification pathways for global agriculture under climate change. Nature Food, 4(3), 223-234.
Zhu, J.K., Hasegawa, P.M. & Bressan, R.A. (2001). Plant salt tolerance. Critical Reviews in Plant Sciences, 20(2), 141-177.