Recent Advances in Plant Breeding (Volume 1) | Doi : 10.37446/volbook102024/70-78

PAID ACCESS | Published on : 05-Jan-2025

Marker Assisted Selection (MAS) in Crop Breeding

  • Noru Raja Sekhar Reddy
  • PG scholar, Department of Genetics and Plant Breeding, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala, India.
  • Beena Thomas
  • Assistant Professor, Department of Genetics and Plant Breeding, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala, India.
  • Aiswarya Raj P.T
  • PG Scholar, Department of genetics and Plant Breeding, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala, India.

Abstract

Marker-assisted selection (MAS) has become a cornerstone in modern crop breeding, significantly boosting precision in selecting traits that improve crop resilience, productivity, and adaptability to environmental stresses. Its integration has shortened breeding cycles and improved breeding efficiency, making it possible to address urgent agricultural challenges, such as climate change and food security, more effectively. Through MAS, crops are bred not only for immediate gains but also for sustainable performance, supporting long-term agricultural advancement.

Keywords

Crop breeding, Disease resistance, Marker-assisted selection, Molecular markers, QTL mapping

References

  • Ahmad, R., Anjum, M. A., Naz, S., & Balal, R. M. (2021). Applications of molecular markers in fruit crops for breeding programs review. Phyton90(1), 17-34.

    Anik, T. R., Nihad, S. A. I., Hasan, M. A. I., Hossain, M. A., Rashid, M. M., Khan, M. A. I., ... & Latif, M. A. (2022). Exploring bacterial blight resistance in landraces and mining of resistant gene (s) using molecular markers and pathogenicity approach. Physiology and Molecular Biology of Plants, 28(2), 455-469.

    Beckmann, J. S., & Soller, M. (1986). Marker-assisted selection in plant breeding. In: Proc. 10th Int. Congr. Genet., Montreal, Canada, 20-27 August 1988, Vol. 3, 437-450.

    Bonnecarrere, V., Rosas, J., & Ferraro, B. (2019). Economic impact of marker-assisted selection and rapid generation advance on breeding programs. Euphytica215(12), 197.

    Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American journal of human genetics32(3), 314.

    Caruso, M., Smith, M.W., Froelicher, Y., Russo, G. and Gmitter Jr, F.G., 2020. Traditional breeding. In The genus citrus (pp. 129-148). Woodhead Publishing.

    Collins, P. J., Wen, Z., & Zhang, S. (2018). Marker-assisted breeding for disease resistance in crop plants. Biotechnologies of Crop Improvement, Volume 3: Genomic Approaches, 41-57.

    Gupta, S., & Singla, D. (2024). 6 Applications of DNA. Plant Mutagenesis and Crop Improvement, 124.

    Haque, M. A., Rafii, M. Y., Yusoff, M. M., Ali, N. S., Yusuff, O., Arolu, F., & Anisuzzaman, M. (2023). Flooding tolerance in Rice: Adaptive mechanism and marker-assisted selection breeding approaches. Molecular Biology Reports50(3), 2795-2812.

    Hasan, N., Choudhary, S., Naaz, N., Sharma, N., & Laskar, R. A. (2021). Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. Journal of Genetic Engineering and Biotechnology19(1), 128.

    He, Z., Zhong, J., Sun, X., Wang, B., Terzaghi, W., & Dai, M. (2018). The maize ABA receptors ZmPYL8, 9, and 12 facilitate plant drought resistance. Frontiers in Plant Science, 9, 422.

    Kam, H., Ndjiondjop, M. N., Ouedraogo, N., Laing, M. D., & Ghesquière, A. (2018). Evaluation of rice cultivars for resistance to Rice yellow mottle virus. African Crop Science Journal, 26(1), 49-61.

    Kushanov, F.N., Turaev, O.S., Ernazarova, D.K., Gapparov, B.M., Oripova, B.B., Kudratova, M.K., Rafieva, F.U., Khalikov, K.K., Erjigitov, D.S., Khidirov, M.T. and Kholova, M.D., 2021. Genetic diversity, QTL mapping, and marker-assisted selection technology in cotton (Gossypium spp.). Frontiers in plant science12, p.779386.

    Maji, A., Gorai, S., Hazra, S., Hasan, W., Parimala, G., & Roy, P. (2023). Marker-Assisted Breeding in Vegetable Crops. In Molecular Marker Techniques: A Potential Approach of Crop Improvement (pp. 257-301). Singapore: Springer Nature Singapore.

    Nelson RR (1978) Genetics of horizontal resistance to plant diseases. Annu Rev Phytopathol 16:359–378

    Prajapati, R., & Tyagi, K. (2024). CRISPR/Casā€Mediated Multiplex Genome Editing in Plants and Applications. Applications of Genome Engineering in Plants, 20-39.

    Randhawa, M. S., Bains, N. S., Sohu, V. S., Chhuneja, P., Trethowan, R. M., Bariana, H. S., & Bansal, U. (2019). Marker assisted transfer of stripe rust and stem rust resistance genes into four wheat cultivars. Agronomy9(9), 497.

    Randhawa, M. S., Lan, C., Basnet, B. R., Bhavani, S., Huerta-Espino, J., Forrest, K. L., ... & Singh, R. P. (2018). Interactions among genes Sr2/Yr30, Lr34/Yr18/Sr57 and Lr68 confer enhanced adult plant resistance to rust diseases in common wheat (Triticum aestivum L.) line'Arula'. Australian Journal of Crop Science, 12(6), 1023-1033.

    Sax, K. (1923). The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics, 8(6), 552.

    Shrestha, V., Awale, M., & Karn, A. (2019). Genome wide association study (GWAS) on disease resistance in maize. Disease Resistance in Crop Plants: Molecular, Genetic and Genomic Perspectives, 113-130.

    St. Clair, D. A. (2010). Quantitative disease resistance and quantitative resistance loci in breeding. Annual review of phytopathology, 48(1), 247-268.

    Tanksley, S. D., Grandillo, S., Fulton, T. M., Zamir, D., Eshed, Y., Petiard, V., ... & Beck-Bunn, T. (1996). Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theoretical and applied genetics92, 213-224.

    Thoday, J.M., 1961. Location of polygenes. Nature, 191,368-370.

    Todkar, L., Singh, G. P., Jain, N., Singh, P. K., & Prabhu, K. V. (2020). Introgression of drought tolerance QTLs through marker assisted backcross breeding in wheat (Triticum aestivum L.). Indian Journal of Genetics and Plant Breeding80(02), 209-212.

    Verma, R. K., Chetia, S. K., Dey, P. C., Sen, P., & Modi, M. K. (2018). Breeding for drought tolerance: A major challenge for rice cultivation under water limiting conditions. Journal of Pharmacognosy and Phytochemistry, 7(5), 813-816.

    Young, N. D., & Tanksley, S. D. (1989). Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theoretical and Applied Genetics, 77, 95-101.

    Zhang, Y., Yang, Z., Ma, H., Huang, L., Ding, F., Du, Y., ... & Ma, Z. (2021). Pyramiding of Fusarium head blight resistance quantitative trait loci, Fhb1, Fhb4, and Fhb5, in modern Chinese wheat cultivars. Frontiers in Plant Science, 12, 694 023.