Metagenomics signifies a comprehensive approach to the analysis of genetic material obtained straight from environmental samples, facilitating the study of microbial communities without the requirement of culturing specific species. This discipline utilizes an advanced sequencing tools and bioinformatics techniques to examine the collective genomes of microbial populations, thereby providing valuable perceptions into their composition, diversity, and functional competences. Metagenomics can be generally classified into two primary types: shotgun metagenomics and amplicon sequencing. In this chapter we will address shot gun and amplicon sequence metagenomics profoundly, in Shotgun metagenomics entails the sequencing of all DNA present in a sample, yielding a detailed representation of the entire microbial community, including rare and unculturable species. Conversely, amplicon sequencing concentrates on the sequencing of specific genetic markers, such as 16S rRNA genes, to detect and categorize microbes within a community. The applications of metagenomics are extensive and transformative. In the realm of environmental microbiology, it enhances our understanding of microbial roles in biogeochemical cycles and ecosystem functionality. In the context of human health, metagenomics is essential for investigating human microbiomes, elucidating their influence on diseases and identifying potential therapeutic targets. The significance of metagenomics is underscored by its diverse applications and its capacity to fundamentally alter our comprehension of microbial life. Furthermore, it plays a dynamic role in biotechnology by facilitating the discovery of novel enzymes and bioactive compounds. This book chapter also demonstrate how the metagenomics contributes to agricultural advancements by improving soil fitness and crop efficiency through the examination of soil microbiomes. In summarized way, the metagenomics is a powerful tool that continues to transform our understanding of microbial life and its applications across various disciplines.
Amplicon metagenomics, Metagenomics, Microbial genomics, Shotgun sequence metagenomics, Unculturable microbial genome
Abbai, N. S., Govender, A., Shaik, R., & Pillay, B. (2012). Pyrosequence analysis of unamplified and whole genome amplified DNA from hydrocarbon-contaminated groundwater. Molecular biotechnology, 50, 39-48.
Adey, A., Morrison, H. G., Asan, Xun, X., Kitzman, J. O., Turner, E. H., ... & Shendure, J. (2010). Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome biology, 11, 1-17.
Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., ... & Zagnitko, O. (2008). The RAST Server: rapid annotations using subsystems technology. BMC genomics, 9, 1-15.
Bag, S., Saha, B., Mehta, O., Anbumani, D., Kumar, N., Dayal, M., ... & Das, B. (2016). An improved method for high quality metagenomics DNA extraction from human and environmental samples. Scientific reports, 6(1), 26775.
Bendtsen, J. D., Nielsen, H., Von Heijne, G., & Brunak, S. (2004). Improved prediction of signal peptides: Signal P 3.0. Journal of molecular biology, 340(4), 783-795.
Bentley, D. R., Balasubramanian, S., Swerdlow, H. P., Smith, G. P., Milton, J., Brown, C. G., ... & Roe, P. M. (2008). Accurate whole human genome sequencing using reversible terminator chemistry. nature, 456(7218), 53-59.
Bodaker, I., Sharon, I., Suzuki, M. T., Feingersch, R., Shmoish, M., Andreishcheva, E., ... & Béja, O. (2009). Comparative community genomics in the Dead Sea: an increasingly extreme environment. The ISME journal, 4(3), 399-407.
Boers, S. A., Jansen, R., & Hays, J. P. (2019). Understanding and overcoming the pitfalls and biases of next-generation sequencing (NGS) methods for use in the routine clinical microbiological diagnostic laboratory. European Journal of Clinical Microbiology & Infectious Diseases, 38, 1059-1070.
Bokulich, N. A., Lewis, Z. T., Boundy-Mills, K., & Mills, D. A. (2016). A new perspective on microbial landscapes within food production. Current opinion in biotechnology, 37, 182-189.
Bowers, R. M., McLetchie, S., Knight, R., & Fierer, N. (2011). Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. The ISME journal, 5(4), 601-612.
Burke, C., Kjelleberg, S., & Thomas, T. (2009). Selective extraction of bacterial DNA from the surfaces of macroalgae. Applied and environmental microbiology, 75(1), 252-256.
Campanaro, S., Treu, L., Vendramin, V., Bovo, B., Giacomini, A., & Corich, V. (2014). Metagenomic analysis of the microbial community in fermented grape marc reveals that Lactobacillus fabifermentans is one of the dominant species: insights into its genome structure. Applied microbiology and biotechnology, 98, 6015-6037.
Caporaso, J. G., Lauber, C. L., Costello, E. K., Berg-Lyons, D., Gonzalez, A., Stombaugh, J., ... & Knight, R. (2011). Moving pictures of the human microbiome. Genome biology, 12, 1-8.
Chakravorty, S., Helb, D., Burday, M., Connell, N., & Alland, D. (2007). A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. Journal of microbiological methods, 69(2), 330-339.
Chan, C. K. K., Hsu, A. L., Halgamuge, S. K., & Tang, S. L. (2008). Binning sequences using very sparse labels within a metagenome. BMC bioinformatics, 9, 1-17.
Chen, K., & Pachter, L. (2005). Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS computational biology, 1(2), e24.
Chevreux, B., Wetter, T., & Suhai, S. (1999, October). Genome sequence assembly using trace signals and additional sequence information. In German conference on bioinformatics (Vol. 99, No. 1, pp. 45-56).
Clarke, K. R. (1993). Non‐parametric multivariate analyses of changes in community structure. Australian journal of ecology, 18(1), 117-143.
Cole, J. R., Chai, B., Farris, R. J., Wang, Q., Kulam, S. A., McGarrell, D. M., ... & Tiedje, J. M. (2005). The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic acids research, 33(suppl_1), D294-D296.
Costello, E. K., Lauber, C. L., Hamady, M., Fierer, N., Gordon, J. I., & Knight, R. (2009). Bacterial community variation in human body habitats across space and time. science, 326(5960), 1694-1697.
Delcher, A. L., Harmon, D., Kasif, S., White, O., & Salzberg, S. L. (1999). Improved microbial gene identification with GLIMMER. Nucleic acids research, 27(23), 4636-4641.
Delmont, T. O., Robe, P., Clark, I., Simonet, P., & Vogel, T. M. (2011). Metagenomic comparison of direct and indirect soil DNA extraction approaches. Journal of microbiological methods, 86(3), 397-400.
Desai, N., Antonopoulos, D., Gilbert, J. A., Glass, E. M., & Meyer, F. (2012). From genomics to metagenomics. Current opinion in biotechnology, 23(1), 72-76.
DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., ... & Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and environmental microbiology, 72(7), 5069-5072.
Diaz, N. N., Krause, L., Goesmann, A., Niehaus, K., & Nattkemper, T. W. (2009). TACOA–Taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approach. BMC bioinformatics, 10, 1-16.
Emms, D. M., & Kelly, S. (2019). OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome biology, 20, 1-14. Federhen, S. (2012). The NCBI taxonomy database. Nucleic acids research, 40(D1), D136-D143.
Felczykowska, A., Krajewska, A., Zielińska, S., & Łoś, J. (2015). Sampling, metadata and DNA extraction-important steps in metagenomic studies. Acta Biochimica Polonica, 62(1), 151-160.
Field, D., Amaral-Zettler, L., Cochrane, G., Cole, J. R., Dawyndt, P., Garrity, G. M., ... & Wooley, J. (2011). The genomic standards consortium. PLoS biology, 9(6), e1001088.
Fritz, M. H. Y., Leinonen, R., Cochrane, G., & Birney, E. (2011). Efficient storage of high throughput DNA sequencing data using reference-based compression. Genome research, 21(5), 734-740.
Gardner, P. P., Daub, J., Tate, J. G., Nawrocki, E. P., Kolbe, D. L., Lindgreen, S., ... & Bateman, A. (2009). Rfam: updates to the RNA families database. Nucleic acids research, 37(suppl_1), D136-D140.
Garrido-Oter, R., Nakano, R. T., Dombrowski, N., Ma, K. W., McHardy, A. C., & Schulze-Lefert, P. (2018). Modular traits of the Rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia. Cell host & microbe, 24(1), 155-167.
Gilbert, J. A., Field, D., Swift, P., Thomas, S., Cummings, D., Temperton, B., ... & Mühling, M. (2010). The taxonomic and functional diversity of microbes at a temperate coastal site: a ‘multi-omic’study of seasonal and diel temporal variation. PloS one, 5(11), e15545.
Glass, E. M., Wilkening, J., Wilke, A., Antonopoulos, D., & Meyer, F. (2010). Using the metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes. Cold Spring Harbor Protocols, 2010(1), pdb-prot5368.
Goel, R., Suyal, D. C., Dash, B., and Soni, R. (2017). “Soil metagenomics: A tool for sustainable agriculture,” in Mining of Microbial Wealth and Metagenomics, eds V. C. Kalia, Y. Shouche, H. J. Purohit, and P. Rahi (New York, NY: Springer), 217–225.
Goltsman, D. S. A., Denef, V. J., Singer, S. W., VerBerkmoes, N. C., Lefsrud, M., Mueller, R. S., ... & Banfield, J. F. (2009). Community genomic and proteomic analyses of chemoautotrophic iron-oxidizing “Leptospirillum rubarum”(Group II) and “Leptospirillum ferrodiazotrophum”(Group III) bacteria in acid mine drainage biofilms. Applied and environmental microbiology, 75(13), 4599-4615.
Guerra, A. B., Oliveira, J. S., Silva-Portela, R. C., Araújo, W., Carlos, A. C., Vasconcelos, A. T. R., ... & Agnez-Lima, L. F. (2018). Metagenome enrichment approach used for selection of oil-degrading bacteria consortia for drill cutting residue bioremediation. Environmental Pollution, 235, 869-880.
Gulig, P. A., Crécy-Lagard, V. D., Wright, A. C., Walts, B., Telonis-Scott, M., & McIntyre, L. M. (2010). SOLiD sequencing of four Vibrio vulnificus genomes enables comparative genomic analysis and identification of candidate clade-specific virulence genes. Bmc Genomics, 11, 1-16.
Gweon, H. S., Oliver, A., Taylor, J., Booth, T., Gibbs, M., Read, D. S., ... & Schonrogge, K. (2015). PIPITS: an automated pipeline for analyses of fungal internal transcribed spacer sequences from the I llumina sequencing platform. Methods in ecology and evolution, 6(8), 973-980.
Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., & Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry & biology, 5(10), R245-R249.
Healy, F. G., Ray, R. M., Aldrich, H. C., Wilkie, A. C., Ingram, L. O., & Shanmugam, K. T. (1995). Direct isolation of functional genes encoding cellulases from the microbial consortia in a thermophilic, anaerobic digester maintained on lignocellulose. Applied microbiology and biotechnology, 43, 667-674.
Henne, A., Schmitz, R. A., Bömeke, M., Gottschalk, G., & Daniel, R. (2000). Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Applied and environmental microbiology, 66(7), 3113-3116.
Hess, J. F., Kohl, T. A., Kotrová, M., Rönsch, K., Paprotka, T., Mohr, V., ... & Paust, N. (2020). Library preparation for next generation sequencing: A review of automation strategies. Biotechnology advances, 41, 107537.
Hess, M., Sczyrba, A., Egan, R., Kim, T. W., Chokhawala, H., Schroth, G., ... & Rubin, E. M. (2011). Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science, 331(6016), 463-467.
Hossain, M. S., DeLaune, P. B., & Gentry, T. J. (2023). Microbiome analysis revealed distinct microbial communities occupying different sized nodules in field-grown peanut. Frontiers in Microbiology, 14, 1075575.
Hugenholtz, P., Goebel, B. M., & Pace, N. R. (1998). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of bacteriology, 180(18), 4765-4774.
Huson, D. H., Auch, A. F., Qi, J., & Schuster, S. C. (2007). MEGAN analysis of metagenomic data. Genome research, 17(3), 377-386.
Huson, D. H., Auch, A. F., Qi, J., & Schuster, S. C. (2007). MEGAN analysis of metagenomic data. Genome research, 17(3), 377-386.
Jimenez, D. J., Andreote, F. D., Chaves, D., Montana, J. S., Osorio-Forero, C., Junca, H., ... & Baena, S. (2012). Structural and functional insights from the metagenome of an acidic hot spring microbial planktonic community in the Colombian Andes. PloS one, 7(12), e52069.
Khairat, R., Ball, M., Chang, C. C. H., Bianucci, R., Nerlich, A. G., Trautmann, M., ... & Pusch, C. M. (2013). First insights into the metagenome of Egyptian mummies using next-generation sequencing. Journal of applied genetics, 54, 309-325.
Kowalchuk, G. A., Speksnijder, A. G., Zhang, K., Goodman, R. M., & Van Veen, J. A. (2007). Finding the needles in the metagenome haystack. Microbial ecology, 53, 475-485.
Krause, L., Diaz, N. N., Goesmann, A., Kelley, S., Nattkemper, T. W., Rohwer, F., ... & Stoye, J. (2008). Phylogenetic classification of short environmental DNA fragments. Nucleic acids research, 36(7), 2230-2239.
Kriseman, J., Busick, C., Szelinger, S., & Dinu, V. (2010). Bing: biomedical informatics pipeline for next generation sequencing. Journal of biomedical informatics, 43(3), 428-434.
Kristiansson, E., Hugenholtz, P., & Dalevi, D. (2009). ShotgunFunctionalizeR: an R-package for functional comparison of metagenomes. Bioinformatics, 25(20), 2737-2738.
Li, R., Li, Y., Kristiansen, K., & Wang, J. (2008). SOAP: short oligonucleotide alignment program. Bioinformatics, 24(5), 713-714.
Liu, B., Gibbons, T., Ghodsi, M., Treangen, T., & Pop, M. (2011). Accurate and fast estimation of taxonomic profiles from metagenomic shotgun sequences. Genome biology, 12, 1-27.
Loeffler, C., Gibson, K. M., Martin, L., Chang, L., Rotman, J., Toma, I. V., ... & Mangul, S. (2019). Metagenomics for clinical diagnostics: technologies and informatics. arXiv preprint arXiv:1911.11304.
Lukashin, A. V., & Borodovsky, M. (1998). GeneMark. hmm: new solutions for gene finding. Nucleic acids research, 26(4), 1107-1115.
Ma, C., Lo, P. K., Xu, J., Li, M., Jiang, Z., Li, G., ... & Li, Q. (2020). Molecular mechanisms underlying lignocellulose degradation and antibiotic resistance genes removal revealed via metagenomics analysis during different agricultural wastes composting. Bioresource Technology, 314, 123731.
Markowitz, V. M., Ivanova, N. N., Szeto, E., Palaniappan, K., Chu, K., Dalevi, D., ... & Kyrpides, N. C. (2007). IMG/M: a data management and analysis system for metagenomes. Nucleic acids research, 36(suppl_1), D534-D538.
Markowitz, V. M., Mavromatis, K., Ivanova, N. N., Chen, I. M. A., Chu, K., & Kyrpides, N. C. (2009). IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics, 25(17), 2271-2278.
McHardy, A. C., Martín, H. G., Tsirigos, A., Hugenholtz, P., & Rigoutsos, I. (2007). Accurate phylogenetic classification of variable-length DNA fragments. Nature methods, 4(1), 63-72.
Miller, J. R., Koren, S., & Sutton, G. (2010). Assembly algorithms for next-generation sequencing data. Genomics, 95(6), 315-327.
Mineta, K., & Gojobori, T. (2016). Databases of the marine metagenomics. Gene, 576(2), 724-728.
Mitchell, A., Bucchini, F., Cochrane, G., Denise, H., Hoopen, P. T., Fraser, M., ... & Finn, R. D. (2016). EBI metagenomics in 2016-an expanding and evolving resource for the analysis and archiving of metagenomic data. Nucleic acids research, 44(D1), D595-D603.
Monzoorul Haque, M., Ghosh, T. S., Komanduri, D., & Mande, S. S. (2009). SOrt-ITEMS: Sequence orthology based approach for improved taxonomic estimation of metagenomic sequences. Bioinformatics, 25(14), 1722-1730.
Mou, X., Sun, S., Edwards, R. A., Hodson, R. E., & Moran, M. A. (2008). Bacterial carbon processing by generalist species in the coastal ocean. Nature, 451(7179), 708-711.
Muwawa, E. M., Obieze, C. C., Makonde, H. M., Jefwa, J. M., Kahindi, J. H., & Khasa, D. P. (2021). 16S rRNA gene amplicon-based metagenomic analysis of bacterial communities in the rhizospheres of selected mangrove species from Mida Creek and Gazi Bay, Kenya. PLoS One, 16(3), e0248485.
Nakamura, K., Oshima, T., Morimoto, T., Ikeda, S., Yoshikawa, H., Shiwa, Y., ... & Kanaya, S. (2011). Sequence-specific error profile of Illumina sequencers. Nucleic acids research, 39(13), e90-e90.
Nayfach, S., Bradley, P. H., Wyman, S. K., Laurent, T. J., Williams, A., Eisen, J. A., ... & Sharpton, T. J. (2015). Automated and accurate estimation of gene family abundance from shotgun metagenomes. PLoS computational biology, 11(11), e1004573.
Niu, B., Fu, L., Sun, S., & Li, W. (2010). Artificial and natural duplicates in pyrosequencing reads of metagenomic data. BMC bioinformatics, 11, 1-11.
Peršoh, D. (2015). Plant-associated fungal communities in the light of meta’omics. Fungal Diversity, 75(1), 1-25.
Pevzner, P. A., Tang, H., & Waterman, M. S. (2001). An Eulerian path approach to DNA fragment assembly. Proceedings of the national academy of sciences, 98(17), 9748-9753.
Pinto, C., Pinho, D., Cardoso, R., Custódio, V., Fernandes, J., Sousa, S., ... & Gomes, A. C. (2015). Wine fermentation microbiome: a landscape from different Portuguese wine appellations. Frontiers in microbiology, 6, 905.
Pinto, C., Pinho, D., Sousa, S., Pinheiro, M., Egas, C., & C. Gomes, A. (2014). Unravelling the diversity of grapevine microbiome. PLoS One, 9(1), e85622.
Prestat, E., David, M. M., Hultman, J., Taş, N., Lamendella, R., Dvornik, J., ... & Jansson, J. K. (2014). FOAM (functional ontology assignments for metagenomes): a hidden Markov model (HMM) database with environmental focus. Nucleic acids research, 42(19), e145-e145.
Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J., & Glöckner, F. O. (2007). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic acids research, 35(21), 7188-7196.
Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., ... & Wang, J. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. nature, 464(7285), 59-65.
Rasko, D. A., Webster, D. R., Sahl, J. W., Bashir, A., Boisen, N., Scheutz, F., ... & Waldor, M. K. (2011). Origins of the E. coli strain causing an outbreak of hemolytic–uremic syndrome in Germany. New England Journal of Medicine, 365(8), 709-717.
Ravin, N. V., Mardanov, A. V., & Skryabin, K. G. (2015). Metagenomics as a tool for the investigation of uncultured microorganisms. Russian Journal of Genetics, 51, 431-439.
Reddy, T. B., Thomas, A. D., Stamatis, D., Bertsch, J., Isbandi, M., Jansson, J., ... & Kyrpides, N. C. (2015). The Genomes OnLine Database (GOLD) v. 5: a metadata management system based on a four level (meta) genome project classification. Nucleic acids research, 43(D1), D1099-D1106.
Rondon, M. R., August, P. R., Bettermann, A. D., Brady, S. F., Grossman, T. H., Liles, M. R., ... & Goodman, R. M. (2000). Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Applied and environmental microbiology, 66(6), 2541-2547.
Rousk, J., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., ... & Fierer, N. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME journal, 4(10), 1340-1351.
Ruiz, O. N., Brown, L. M., Radwan, O., Bowen, L. L., Gunasekera, T. S., Mueller, S. S., ... & Striebich, R. C. (2021). Metagenomic characterization reveals complex association of soil hydrocarbon-degrading bacteria. International Biodeterioration & Biodegradation, 157, 105161.
Salem, M. A., Perez de Souza, L., Serag, A., Fernie, A. R., Farag, M. A., Ezzat, S. M., & Alseekh, S. (2020). Metabolomics in the context of plant natural products research: From sample preparation to metabolite analysis. Metabolites, 10(1), 37.
Salvetti, E., Campanaro, S., Campedelli, I., Fracchetti, F., Gobbi, A., Tornielli, G. B., ... & Felis, G. E. (2016). Whole-metagenome-sequencing-based community profiles of Vitis vinifera L. cv. Corvina berries withered in two post-harvest conditions. Frontiers in microbiology, 7, 937.
Sanger, F. (1988). SEQ1JENCES, SEQUENCES, AND SEQ1JENCES. Ann. Rev. Biochem, 57, 1-28.
Scholz, M. B., Lo, C. C., & Chain, P. S. (2012). Next generation sequencing and bioinformatic bottlenecks: the current state of metagenomic data analysis. Current opinion in biotechnology, 23(1), 9-15.
Sharma, R., Kumar, A., Singh, N., & Sharma, K. (2021). 16S rRNA gene profiling of rhizospheric microbial community of Eichhornia crassipes. Molecular Biology Reports, 48(5), 4055-4064.
Sorek, R., Zhu, Y., Creevey, C. J., Francino, M. P., Bork, P., & Rubin, E. M. (2007). Genome-wide experimental determination of barriers to horizontal gene transfer. Science, 318(5855), 1449-1452.
Sun, S., Chen, J., Li, W., Altintas, I., Lin, A., Peltier, S., ... & Wooley, J. (2010). Community cyberinfrastructure for advanced microbial ecology research and analysis: the CAMERA resource. Nucleic acids research, 39(suppl_1), D546-D551.
Sun, S., Chen, J., Li, W., Altintas, I., Lin, A., Peltier, S., ... & Wooley, J. (2010). Community cyberinfrastructure for advanced microbial ecology research and analysis: the CAMERA resource. Nucleic acids research, 39(suppl_1), D546-D551.
Teal, T. K., & Schmidt, T. M. (2010). Identifying and removing artificial replicates from 454 pyrosequencing data. Cold Spring Harbor Protocols, 2010(4), pdb-prot5409.
Thomas, T., Rusch, D., DeMaere, M. Z., Yung, P. Y., Lewis, M., Halpern, A., ... & Kjelleberg, S. (2010). Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. The ISME journal, 4(12), 1557-1567.
Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Duncan, A., Ley, R. E., ... & Gordon, J. I. (2009). A core gut microbiome in obese and lean twins. nature, 457(7228), 480-484.
Tyler, H. L., Roesch, L. F., Gowda, S., Dawson, W. O., & Triplett, E. W. (2009). Confirmation of the sequence of ‘Candidatus Liberibacter asiaticus’ and assessment of microbial diversity in Huanglongbing-infected citrus phloem using a metagenomic approach. Molecular Plant-Microbe Interactions, 22(12), 1624-1634.
Tyson, G. W., Chapman, J., Hugenholtz, P., Allen, E. E., Ram, R. J., Richardson, P. M., ... & Banfield, J. F. (2004). Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature, 428(6978), 37-43.
Uchiyama, T., & Miyazaki, K. (2009). Functional metagenomics for enzyme discovery: challenges to efficient screening. Current opinion in biotechnology, 20(6), 616-622.
Varin, T., Lovejoy, C., Jungblut, A. D., Vincent, W. F., & Corbeil, J. (2012). Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Applied and environmental microbiology, 78(2), 549-559.
Vavourakis, C. D., Andrei, A. S., Mehrshad, M., Ghai, R., Sorokin, D. Y., & Muyzer, G. (2018). A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments. Microbiome, 6, 1-18.
Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A., ... & Smith, H. O. (2004). Environmental genome shotgun sequencing of the Sargasso Sea. science, 304(5667), 66-74.
White, J. R., Nagarajan, N., & Pop, M. (2009). Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS computational biology, 5(4), e1000352.
White, R. A., Blainey, P. C., Fan, H. C., & Quake, S. R. (2009). Digital PCR provides sensitive and absolute calibration for high throughput sequencing. BMC genomics, 10, 1-12.
Wilke, A., Bischof, J., Gerlach, W., Glass, E., Harrison, T., Keegan, K. P., ... & Meyer, F. (2016). The MG-RAST metagenomics database and portal in 2015. Nucleic acids research, 44(D1), D590-D594.
Williamson, S. J., Rusch, D. B., Yooseph, S., Halpern, A. L., Heidelberg, K. B., Glass, J. I., ... & Venter, J. C. (2008). The Sorcerer II Global Ocean Sampling Expedition: metagenomic characterization of viruses within aquatic microbial samples. PloS one, 3(1), e1456.
Wommack, K. E., Bhavsar, J., & Ravel, J. (2008). Metagenomics: read length matters. Applied and environmental microbiology, 74(5), 1453-1463.
Wooley, J. C., Godzik, A., & Friedberg, I. (2010). A primer on metagenomics. PLoS computational biology, 6(2), e1000667.
Yilmaz, P., Kottmann, R., Field, D., Knight, R., Cole, J. R., Amaral-Zettler, L., ... & Glöckner, F. O. (2011). Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nature biotechnology, 29(5), 415-420.
Yooseph, S., Sutton, G., Rusch, D. B., Halpern, A. L., Williamson, S. J., Remington, K., ... & Venter, J. C. (2007). The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families. PLoS biology, 5(3), e16.
Yun, J., & Ryu, S. (2005). Screening for novel enzymes from metagenome and SIGEX, as a way to improve it. Microbial cell factories, 4, 1-5.
Yung, P. Y., Burke, C., Lewis, M., Egan, S., Kjelleberg, S., & Thomas, T. (2009). Phylogenetic screening of a bacterial, metagenomic library using homing endonuclease restriction and marker insertion. Nucleic acids research, 37(21), e144-e144.
Zarraonaindia, I., Owens, S. M., Weisenhorn, P., West, K., Hampton-Marcell, J., Lax, S., ... & Gilbert, J. A. (2015). The soil microbiome influences grapevine-associated microbiota. MBio, 6(2), 10-1128.
Zerbino, D. R., & Birney, E. (2008). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome research, 18(5), 821-829.
Zheng, H., & Wu, H. (2010). Short prokaryotic DNA fragment binning using a hierarchical classifier based on linear discriminant analysis and principal component analysis. Journal of bioinformatics and computational biology, 8(06), 995-1011.