Advances in Crop Breeding | Doi : 10.37446/edibook072024/77-93

PAID ACCESS | Published on : 31-Dec-2024

Molecular Genetics - Forward and Reverse Genetics Approaches in Crop Improvement

  • Vani Praveena M
  • Assistant Professor, Genetics and Plant Breeding, N.S. Agricultural College, Markapur, ANGRAU, Andra Pradesh, India.
  • Aishwarya M
  • Assistant Professor, Genetics and Plant Breeding, N.S. Agricultural College, Markapur, ANGRAU, Andra Pradesh, India.
  • Magudeeswari P
  • Assistant Professor, Vanavarayar, Institute of Agriculture, TNAU, Pollachi, India.
  • Dharmateja P
  • Assistant Professor, Genetics and Plant Breeding, CAU, Imphal, India.

Abstract

Forward genetics involves identifying and characterizing genes responsible for observed mutant phenotypes. The process begins with observing or measuring a phenotype, followed by mapping the genes or loci causing the phenotype. This method is unbiased in gene identification since it focuses primarily on the phenotype. In contrast, reverse genetics begin with a known gene and examines the resulting phenotype after the gene's disruption. To generate random mutations in organisms, techniques like ultraviolet irradiation, X-rays and chemical treatments are used. Molecular markers which can measure the genetic variation across the genome were used to distinguish different strains. Advances in technology and genomic knowledge have expanded the sources of these markers. Thus, in plant breeding, forward genetics is vital in identifying genes associated with desirable traits, while reverse genetics is important for validating gene functions and developing crops with targeted improvements.

Keywords

Forward genetics, Molecular makers, Genomic knowledge, Ultraviolet irradiation

References

  • Ahmed, M. M., Bian, S., Wang, M., Zhao, J., Zhang, B., Liu, Q., ... & Yu, H. (2017). RNAi-mediated resistance to rice black-streaked dwarf virus in transgenic rice. Transgenic research26, 197-207.

    Ahringer, J. (2006). Reverse genetics. InWormBook: The Online Review of C. elegans Biology. WormBook.

    Backman, J. D., Li, A. H., Marcketta, A., Sun, D., Mbatchou, J., Kessler, M. D., ... & Ferreira, M. A. (2021). Exome sequencing and analysis of 454,787 UK Biobank participants. Nature, 599(7886), 628-634.

    Becker, S., & Boch, J. (2021). TALE and TALEN genome editing technologies. Gene and Genome Editing2, 100007.

    Ben-Amar, A., Daldoul, S., M Reustle, G., Krczal, G., & Mliki, A. (2016). Reverse genetics and high throughput sequencing methodologies for plant functional genomics. Current Genomics17(6), 460-475.

    Bhardwaj, A., & Nain, V. (2021). TALENs—an indispensable tool in the era of CRISPR: a mini review. Journal of Genetic Engineering and Biotechnology19(1), 125.

    Bordat, A., Savois, V., Nicolas, M., Salse, J., Chauveau, A., Bourgeois, M., Potier J, Houtin H, Rond C, Murat F & Burstin, J. (2011). Translational genomics in legumes allowed placing in silico 5460 unigenes on the pea functional map and identified candidate genes in Pisum sativum L. G3: Genes Genomes Genetics1(2), 93-103.

    Bouchez, A., Hospital, F., Causse, M., Gallais, A & Charcosset, A. (2002). Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics162(4), 1945-1959.

    Chen, S., Xu, C. G., Lin, X. H., & Zhang, Q. (2001). Improving bacterial blight resistance of ‘6078′, an elite restorer line of hybrid rice, by molecular marker‐assisted selection. Plant Breeding120(2), 133-137.

    Colasuonno, P., Marcotuli, I., Gadaleta, A., & Soriano, J. M. (2021). From genetic maps to QTL cloning: an overview for durum wheat. Plants10(2), 315.

    Curtin, S. J., Zhang, F., Sander, J. D., Haun, W. J., Starker, C., Baltes, N. J., Deepak, R., Elizabeth J. D., Mathew J. G., Andrew P. C., Drena D. J., Keith Joung, Daniel F. V., & Robert M. S.  (2011). Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant physiology156(2), 466-473.

    Dash, M. & Mishra, A. (2024). QTL Mapping: Principle, Approaches, and Applications in Crop Improvement. In Smart Breeding (pp. 31-60). Apple Academic Press.

    Deokar, A. A., Kondawar, V., Kohli, D., Aslam, M., Jain, P. K., Karuppayil, S. M., Varshney, R.K., & Srinivasan, R. (2015). The CarERF genes in chickpea (Cicer arietinum L.) and the identification of CarERF116 as abiotic stress responsive transcription factor. Functional & integrative genomics15, 27-46.

    Aklilu, E. (2021). Review on forward and reverse genetics in plant breeding. All Life14(1), 127-135.

    Enrique, R., Siciliano, F., Favaro, M. A., Gerhardt, N., Roeschlin, R., Rigano, L., Castagnaro, A., Vojnov, A., Sendin, L., & Marano, M. R. (2011). Novel demonstration of RNAi in citrus reveals importance of citrus callose synthase in defence against Xanthomonas citri subsp. citri. Plant Biotechnology Journal, 9(3), 394-407.

    Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature391(6669), 806-811.

    Gregorio, G. B. (1997). Tagging salinity tolerance genes in rice using amplified fragment length polymorphism (AFLP).

    Gupta, B. K., Sahoo, K. K., Ghosh, A., Tripathi, A. K., Anwar, K., Das, P., Anil, K. S., Ashwani, P., Sudhir K. S., & Singla‐Pareek, S. L. (2018). Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice. Plant, Cell & Environment41(5), 1186-1200.

    Hameed, A., Tahir, M. N., Asad, S., Bilal, R., Van Eck, J., Jander, G., & Mansoor, S. (2017). RNAi-mediated simultaneous resistance against three RNA viruses in potato. Molecular biotechnology59, 73-83.

    Haun, W., Coffman, A., Clasen, B.M., Demorest, Z.L., Lowy, A., Ray, E., Retterath, A., Stoddard, T., Juillerat, A., Cedrone, F., & Mathis, L. (2014). Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnology Journal12(7), 934-940.

    Hu, Y., Wu, Q., Peng, Z., Sprague, S. A., Wang, W., Park, J., ... & Park, S. (2017). Silencing of OsGRXS17 in rice improves drought stress tolerance by modulating ROS accumulation and stomatal closure. Scientific reports7(1), 15950.

    Iqbal, Z., Sattar, M. N., & Shafiq, M. (2016). CRISPR/Cas9: a tool to circumscribe cotton leaf curl disease. Frontiers in Plant Science7, 475.

    Jefferies, S. P., King, B. J., Barr, A. R., Warner, P., Logue, S. J., & Langridge, P. (2003). Marker‐assisted backcross introgression of the Yd2 gene conferring resistance to barley yellow dwarf virus in barley. Plant Breeding122(1), 52-56.

    Jiang, F., & Doudna, J. A. (2017). CRISPR–Cas9 structures and mechanisms. Annual Review of Biophysics46(1), 505-529.

    Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., & Weeks, D. P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research41(20), e188-e188.

    Jin, Y., Pan, W., Zheng, X., Cheng, X., Liu, M., Ma, H., & Ge, X. (2018). OsERF101, an ERF family transcription factor, regulates drought stress response in reproductive tissues. Plant Molecular Biology98, 51-65.

    Joseph, M., Gopalakrishnan, S., Sharma, R. K., Singh, V. P., Singh, A. K., Singh, N. K., & Mohapatra, T. (2004). Combining bacterial blight resistance and Basmati quality characteristics by phenotypic and molecular marker-assisted selection in rice. Molecular Breeding13, 377-387.

    Joshi, R., Prashat, R., Sharma, P. C., Singla-Pareek, S. L., & Pareek, A. (2016). Physiological characterization of gamma-ray induced mutant population of rice to facilitate biomass and yield improvement under salinity stress. Indian Journal of Plant Physiology21, 545-555.

    Kaur, N., Alok, A., Shivani, N., Kaur, N., Pandey, P., Awasthi, P., & Tiwari, S. (2018). CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Functional & Integrative Genomics18, 89-99.

    Kelly, J. D., & Vallejo, V. A. (2004). A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. HortScience39(6), 1196-1207.

    Kim, D., Alptekin, B., & Budak, H. (2018). CRISPR/Cas9 genome editing in wheat. Functional & Integrative Genomics18, 31-41.

    Kumar, S., AlAbed, D., Worden, A., Novak, S., Wu, H., Ausmus, C., Beck, B., Robinson, H., Minnicks, T., Hemingway, D., Lee, R., Skaggs, N., Wang, L., Marri, P., & Gupta, M. (2015). A modular gene targeting system for sequential transgene stacking in plants. Journal of Biotechnology207, 12-20.

    Kutscher, L. M., & Shaham, S. (2014). Forward and reverse mutagenesis in C. elegans. WormBook: the online review of C. elegans biology, 1.

    Laoué, J., Depardieu, C., Gérardi, S., Lamothe, M., Bomal, C., Azaiez, A., Gros-Louis, M. C., Laroche, J., Boyle, B., Hammerbacher, A. and Isabel, N. (2021). Combining QTL mapping and transcriptomics to decipher the genetic architecture of phenolic compounds metabolism in the conifer white spruce. Frontiers in Plant Science12, 675108.

    Li, J., Stoddard, T. J., Demorest, Z. L., Lavoie, P. O., Luo, S., Clasen, B. M., Cedrone, F., Ray, E.E., Coffman, A.P., Daulhac, A. & Yabandith, A. (2016). Multiplexed, targeted gene editing in Nicotiana benthamiana for glyco‐engineering and monoclonal antibody production. Plant Biotechnology Journal14(2), 533-542.

    Liang, Z., Zhang, K., Chen, K., & Gao, C. (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics41(2), 63-68.

    Shi-Ping, L. I. U., Xin, L. I., Chao-Yang, W. A. N. G., Xiang-Hua, L. I., & Yu-Qing, H. E. (2003). Improvement of resistance to rice blast in Zhenshan 97 by molecular marker-aided selection. Journal of Integrative Plant Biology45(11), 1346.

    Mackill, D. J., Collard, B. C. Y., Neeraja, C. N., Rodriguez, R. M., Heuer, S., & Ismail, A. M. (2007). QTLs in rice breeding: examples for abiotic stresses. In Rice Genetics V (pp. 155-167).

    Maibam, A., Tyagi, A., Satheesh, V., Mahato, A. K., Jain, N., Raje, R. S., Rao, A. R., Gaikwad, K., & Singh, N. K. (2015). Genome-wide identification and characterization of heat shock factor genes from pigeonpea (Cajanus cajan). Molecular Plant Breeding6(7).

    Malathi, P., Muzammil, S. A., Krishnaveni, D., Balachandran, S. M., & Mangrauthia, S. K. (2019). Coat protein 3 of Rice tungro spherical virus is the key target gene for development of RNAi mediated tungro disease resistance in rice. Agri Gene12, 100084.

    Malik, H. J., Raza, A., Amin, I., Scheffler, J. A., Scheffler, B. E., Brown, J. K., & Mansoor, S. (2016). RNAi-mediated mortality of the whitefly through transgenic expression of double-stranded RNA homologous to acetylcholinesterase and ecdysone receptor in tobacco plants. Scientific Reports6(1), 38469.

    Mamta, Reddy, K. R. K., & Rajam, M. V. (2016). Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato. Plant Molecular Biology90, 281-292.

    Mezzetti, B., Smagghe, G., Arpaia, S., Christiaens, O., Dietz-Pfeilstetter, A., Jones, H., Kostov, K., Sabbadini, S., Opsahl-Sorteberg, H. G., Ventura, V. & Taning, C. N. T. (2020). RNAi: What is its position in agriculture? Journal of Pest Science93(4), 1125-1130.

    Mickelbart, M. V., Hasegawa, P. M., & Bailey-Serres, J. (2015). Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetics16(4), 237-251.

    Mohapatra, C., Chand, R., Singh, V. K., Singh, A. K., & Kushwaha, C. (2016). Identification and characterisation of Mlo genes in pea (Pisum sativum L.) vis-à-vis validation of Mlo gene-specific markers. Turkish Journal of Biology40(1), 184-195.

    Muchero, W., Ehlers, J. D., Close, T. J., & Roberts, P. A. (2009). Mapping QTL for drought stress-induced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp.]. Theoretical and Applied Genetics118, 849-863.

    Muchero, W., Ehlers, J. D., & Roberts, P. A. (2010). QTL analysis for resistance to foliar damage caused by Thrips tabaci and Frankliniella schultzei (Thysanoptera: Thripidae) feeding in cowpea [Vigna unguiculata (L.) Walp.]. Molecular Breeding25, 47-56.

    Nain, V., Sahi, S., & Verma, A. (2010). CPP-ZFN: a potential DNA-targeting anti-malarial drug. Malaria journal9, 1-6.

    Hu, Y., Wu, Q., Peng, Z., Sprague, S. A., Wang, W., Park, J., Akhunov, E., Jagadish, K. S., Nakata, P. A., Cheng, N. & Hirschi, K.D. (2017). Silencing of OsGRXS17 in rice improves drought stress tolerance by modulating ROS accumulation and stomatal closure. Scientific reports7(1), 15950.

    Nutan, K. K., Kumar, G., Singla-Pareek, S. L., & Pareek, A. (2018). A salt overly sensitive pathway member from Brassica juncea BjSOS3 can functionally complement ΔAtsos3 in Arabidopsis. Current genomics19(1), 60.

    Parry, M. A., Madgwick, P. J., Bayon, C., Tearall, K., Hernandez-Lopez, A., Baudo, M., Rakszegi, M., Hamada, W., Al-Yassin, A., Ouabbou, H. & Labhilili, M. (2009). Mutation discovery for crop improvement. Journal of Experimental Botany60(10), 2817-2825.

    Puria, R., Sahi, S., & Nain, V. (2012). HER2+ breast cancer therapy: by CPP-ZFN mediated targeting of mTOR? Technology in cancer research & treatment11(2), 175-180.

    Ross, J. P., Dion, P. A., & Rouleau, G. A. (2020). Exome sequencing in genetic disease: recent advances and considerations. F1000Research9.

    Roychowdhury, R., & Tah, J. (2013). Mutagenesis—A potential approach for crop improvement. Crop improvement: new approaches and modern techniques, 149-187.

    Shoup Rupp, J. L., Cruz, L. F., Trick, H. N., & Fellers, J. P. (2016). RNAi‐Mediated, Stable Resistance to Triticum mosaic virus in Wheat. Crop Science56(4), 1602-1610.

    Salava, H., Thula, S., Mohan, V., Kumar, R., & Maghuly, F. (2021). Application of genome editing in tomato breeding: Mechanisms, advances, and prospects. International Journal of Molecular Sciences22(2), 682.

    Sanju, S., Siddappa, S., Thakur, A., Shukla, P. K., Srivastava, N., Pattanayak, D., Sharma, S. & Singh, B.P. (2015). Host-mediated gene silencing of a single effector gene from the potato pathogen Phytophthora infestans imparts partial resistance to late blight disease. Functional & integrative genomics15, 697-706.

    Schneider, K., Schiermeyer, A., Dolls, A., Koch, N., Herwartz, D., Kirchhoff, J., Fischer, R., Russell, S.M., Cao, Z., Corbin, D.R. & Sastry‐Dent, L. (2016). Targeted gene exchange in plant cells mediated by a zinc finger nuclease double cut. Plant Biotechnology Journal14(4), 1151-1160.

    Sekhar, K., Priyanka, B., Reddy, V. D., & Rao, K. V. (2010). Isolation and characterization of a pigeonpea cyclophilin (CcCYP) gene, and its over‐expression in Arabidopsis confers multiple abiotic stress tolerance. Plant, cell & environment33(8), 1324-1338.

    Senthilraja, C., Gurivi Reddy, M., Rajeswaran, J., Kokiladevi, E., & Velazhahan, R. (2018). RNA interference-mediated resistance to Tobacco streak virus in transgenic peanut. Australasian Plant Pathology47, 227-230.

    Shan, Q., Zhang, Y., Chen, K., Zhang, K., & Gao, C. (2015). Creation of fragrant rice by targeted knockout of the Os BADH 2 gene using TALEN technology. Plant biotechnology journal13(6), 791-800.

    Singh, B., Mishra, S., Bohra, A., Joshi, R., & Siddique, K. H. (2018). Crop phenomics for abiotic stress tolerance in crop plants. In Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants (pp. 277-296). Academic Press.

    Singh, S., Sidhu, J. S., Huang, N., Vikal, Y., Li, Z., Brar, D. S., Dhaliwal, H. S., & Khush, G. S. (2001). Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theoretical and Applied Genetics102, 1011-1015.

    Singh, D., Chaudhary, P., Taunk, J., Singh, C. K., Chinnusamy, V., Sevanthi, A. M., Singh, V. J., & Pal, M. (2024). Targeting Induced Local Lesions in Genomes (TILLING): Advances and opportunities for fast tracking crop breeding. Critical Reviews in Biotechnology44(5), 817-836.

    Siyal, A. L., Sial, S., Hossain, A., & Chang, A. G. (2024). Targeting Induced Local Lesions in Genomes: A Transgenic Approach for the Improvement of Desirable Crop in the Current Era of the Changing Climate. Food Production, Diversity, and Safety Under Climate Change, 223-233.

    Soda, N., Gupta, B. K., Anwar, K., Sharan, A., Govindjee, Singla-Pareek, S. L., & Pareek, A. (2018). Rice intermediate filament, OsIF, stabilizes photosynthetic machinery and yield under salinity and heat stress. Scientific Reports8(1), 4072.

    Tarantino, L. M., & Eisener-Dorman, A. F. (2012). Forward genetic approaches to understanding complex behaviors. Behavioral Neurogenetics, 25-58.

    Tiwari, I. M., Jesuraj, A., Kamboj, R., Devanna, B. N., Botella, J. R., & Sharma, T. R. (2017). Host delivered RNAi, an efficient approach to increase rice resistance to sheath blight pathogen (Rhizoctonia solani). Scientific reports7(1), 7521.

    Uddin, F., Rudin, C. M., & Sen, T. (2020). CRISPR gene therapy: applications, limitations, and implications for the future. Frontiers in oncology10, 1387.

    Van Berloo, R., Aalbers, H., Werkman, A., & Niks, R. E. (2001). Resistance QTL confirmed through development of QTL-NILs for barley leaf rust resistance. Molecular Breeding8, 187-195.

    Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., Liu, Y.G., & Zhao, K. (2016). Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PloS one11(4), e0154027.

    Wang, W., Wang, W., Wu, Y., Li, Q., Zhang, G., Shi, R., Yang, J., Wang, Y., & Wang, W. (2020). The involvement of wheat U‐box E3 ubiquitin ligase TaPUB1 in salt stress tolerance. Journal of Integrative Plant Biology62(5), 631-651.

    Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., & Qiu, J. L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature biotechnology32(9), 947-951.

    Yin, X., Huang, L., Wang, M., Cui, Y., & Xia, X. (2017). OsDSR-1, a calmodulin-like gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). Molecular Breeding37, 1-13.

    Zakhrabekova, S., Gough, S. P., Lundh, L., & Hansson, M. (2013). Functional genomics and forward and reverse genetics approaches for identification of important QTLs in plants. Proc. Azerbaijan Natl. Acad. Sci.68, 23-28.

    Zhang, X. H., Tee, L. Y., Wang, X. G., Huang, Q. S., & Yang, S. H. (2015). Off-target effects in CRISPR/Cas9-mediated genome engineering. Molecular Therapy-Nucleic Acids4.

    Zhang, Y., Zhang, F., Li, X., Baller, J. A., Qi, Y., Starker, C. G., Bogdanove, A. J., & Voytas, D. F. (2013). Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant physiology161(1), 20-27.

    Zhou, R., Zhu, Z., Kong, X., Huo, N., Tian, Q., Li, P., Jin, C. Y., Dong, Y. C., & Jia, J. (2005). Development of wheat near-isogenic lines for powdery mildew resistance. Theoretical and Applied Genetics110, 640-648.

    Zhu, L., Zhu, J., Liu, Z., Wang, Z., Zhou, C., & Wang, H. (2017). Host-induced gene silencing of rice blast fungus Magnaporthe oryzae pathogenicity genes mediated by the brome mosaic virus. Genes8(10), 241.

    Zhu, M., Meng, X., Cai, J., Li, G., Dong, T., & Li, Z. (2018). Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato. BMC plant biology18, 1-14.