Forward genetics involves identifying and characterizing genes responsible for observed mutant phenotypes. The process begins with observing or measuring a phenotype, followed by mapping the genes or loci causing the phenotype. This method is unbiased in gene identification since it focuses primarily on the phenotype. In contrast, reverse genetics begin with a known gene and examines the resulting phenotype after the gene's disruption. To generate random mutations in organisms, techniques like ultraviolet irradiation, X-rays and chemical treatments are used. Molecular markers which can measure the genetic variation across the genome were used to distinguish different strains. Advances in technology and genomic knowledge have expanded the sources of these markers. Thus, in plant breeding, forward genetics is vital in identifying genes associated with desirable traits, while reverse genetics is important for validating gene functions and developing crops with targeted improvements.
Forward genetics, Molecular makers, Genomic knowledge, Ultraviolet irradiation
Ahmed, M. M., Bian, S., Wang, M., Zhao, J., Zhang, B., Liu, Q., ... & Yu, H. (2017). RNAi-mediated resistance to rice black-streaked dwarf virus in transgenic rice. Transgenic research, 26, 197-207.
Ahringer, J. (2006). Reverse genetics. InWormBook: The Online Review of C. elegans Biology. WormBook.
Backman, J. D., Li, A. H., Marcketta, A., Sun, D., Mbatchou, J., Kessler, M. D., ... & Ferreira, M. A. (2021). Exome sequencing and analysis of 454,787 UK Biobank participants. Nature, 599(7886), 628-634.
Becker, S., & Boch, J. (2021). TALE and TALEN genome editing technologies. Gene and Genome Editing, 2, 100007.
Ben-Amar, A., Daldoul, S., M Reustle, G., Krczal, G., & Mliki, A. (2016). Reverse genetics and high throughput sequencing methodologies for plant functional genomics. Current Genomics, 17(6), 460-475.
Bhardwaj, A., & Nain, V. (2021). TALENs—an indispensable tool in the era of CRISPR: a mini review. Journal of Genetic Engineering and Biotechnology, 19(1), 125.
Bordat, A., Savois, V., Nicolas, M., Salse, J., Chauveau, A., Bourgeois, M., Potier J, Houtin H, Rond C, Murat F & Burstin, J. (2011). Translational genomics in legumes allowed placing in silico 5460 unigenes on the pea functional map and identified candidate genes in Pisum sativum L. G3: Genes Genomes Genetics, 1(2), 93-103.
Bouchez, A., Hospital, F., Causse, M., Gallais, A & Charcosset, A. (2002). Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics, 162(4), 1945-1959.
Chen, S., Xu, C. G., Lin, X. H., & Zhang, Q. (2001). Improving bacterial blight resistance of ‘6078′, an elite restorer line of hybrid rice, by molecular marker‐assisted selection. Plant Breeding, 120(2), 133-137.
Colasuonno, P., Marcotuli, I., Gadaleta, A., & Soriano, J. M. (2021). From genetic maps to QTL cloning: an overview for durum wheat. Plants, 10(2), 315.
Curtin, S. J., Zhang, F., Sander, J. D., Haun, W. J., Starker, C., Baltes, N. J., Deepak, R., Elizabeth J. D., Mathew J. G., Andrew P. C., Drena D. J., Keith Joung, Daniel F. V., & Robert M. S. (2011). Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant physiology, 156(2), 466-473.
Dash, M. & Mishra, A. (2024). QTL Mapping: Principle, Approaches, and Applications in Crop Improvement. In Smart Breeding (pp. 31-60). Apple Academic Press.
Deokar, A. A., Kondawar, V., Kohli, D., Aslam, M., Jain, P. K., Karuppayil, S. M., Varshney, R.K., & Srinivasan, R. (2015). The CarERF genes in chickpea (Cicer arietinum L.) and the identification of CarERF116 as abiotic stress responsive transcription factor. Functional & integrative genomics, 15, 27-46.
Aklilu, E. (2021). Review on forward and reverse genetics in plant breeding. All Life, 14(1), 127-135.
Enrique, R., Siciliano, F., Favaro, M. A., Gerhardt, N., Roeschlin, R., Rigano, L., Castagnaro, A., Vojnov, A., Sendin, L., & Marano, M. R. (2011). Novel demonstration of RNAi in citrus reveals importance of citrus callose synthase in defence against Xanthomonas citri subsp. citri. Plant Biotechnology Journal, 9(3), 394-407.
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669), 806-811.
Gregorio, G. B. (1997). Tagging salinity tolerance genes in rice using amplified fragment length polymorphism (AFLP).
Gupta, B. K., Sahoo, K. K., Ghosh, A., Tripathi, A. K., Anwar, K., Das, P., Anil, K. S., Ashwani, P., Sudhir K. S., & Singla‐Pareek, S. L. (2018). Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice. Plant, Cell & Environment, 41(5), 1186-1200.
Hameed, A., Tahir, M. N., Asad, S., Bilal, R., Van Eck, J., Jander, G., & Mansoor, S. (2017). RNAi-mediated simultaneous resistance against three RNA viruses in potato. Molecular biotechnology, 59, 73-83.
Haun, W., Coffman, A., Clasen, B.M., Demorest, Z.L., Lowy, A., Ray, E., Retterath, A., Stoddard, T., Juillerat, A., Cedrone, F., & Mathis, L. (2014). Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnology Journal, 12(7), 934-940.
Hu, Y., Wu, Q., Peng, Z., Sprague, S. A., Wang, W., Park, J., ... & Park, S. (2017). Silencing of OsGRXS17 in rice improves drought stress tolerance by modulating ROS accumulation and stomatal closure. Scientific reports, 7(1), 15950.
Iqbal, Z., Sattar, M. N., & Shafiq, M. (2016). CRISPR/Cas9: a tool to circumscribe cotton leaf curl disease. Frontiers in Plant Science, 7, 475.
Jefferies, S. P., King, B. J., Barr, A. R., Warner, P., Logue, S. J., & Langridge, P. (2003). Marker‐assisted backcross introgression of the Yd2 gene conferring resistance to barley yellow dwarf virus in barley. Plant Breeding, 122(1), 52-56.
Jiang, F., & Doudna, J. A. (2017). CRISPR–Cas9 structures and mechanisms. Annual Review of Biophysics, 46(1), 505-529.
Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., & Weeks, D. P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 41(20), e188-e188.
Jin, Y., Pan, W., Zheng, X., Cheng, X., Liu, M., Ma, H., & Ge, X. (2018). OsERF101, an ERF family transcription factor, regulates drought stress response in reproductive tissues. Plant Molecular Biology, 98, 51-65.
Joseph, M., Gopalakrishnan, S., Sharma, R. K., Singh, V. P., Singh, A. K., Singh, N. K., & Mohapatra, T. (2004). Combining bacterial blight resistance and Basmati quality characteristics by phenotypic and molecular marker-assisted selection in rice. Molecular Breeding, 13, 377-387.
Joshi, R., Prashat, R., Sharma, P. C., Singla-Pareek, S. L., & Pareek, A. (2016). Physiological characterization of gamma-ray induced mutant population of rice to facilitate biomass and yield improvement under salinity stress. Indian Journal of Plant Physiology, 21, 545-555.
Kaur, N., Alok, A., Shivani, N., Kaur, N., Pandey, P., Awasthi, P., & Tiwari, S. (2018). CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Functional & Integrative Genomics, 18, 89-99.
Kelly, J. D., & Vallejo, V. A. (2004). A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. HortScience, 39(6), 1196-1207.
Kim, D., Alptekin, B., & Budak, H. (2018). CRISPR/Cas9 genome editing in wheat. Functional & Integrative Genomics, 18, 31-41.
Kumar, S., AlAbed, D., Worden, A., Novak, S., Wu, H., Ausmus, C., Beck, B., Robinson, H., Minnicks, T., Hemingway, D., Lee, R., Skaggs, N., Wang, L., Marri, P., & Gupta, M. (2015). A modular gene targeting system for sequential transgene stacking in plants. Journal of Biotechnology, 207, 12-20.
Kutscher, L. M., & Shaham, S. (2014). Forward and reverse mutagenesis in C. elegans. WormBook: the online review of C. elegans biology, 1.
Laoué, J., Depardieu, C., Gérardi, S., Lamothe, M., Bomal, C., Azaiez, A., Gros-Louis, M. C., Laroche, J., Boyle, B., Hammerbacher, A. and Isabel, N. (2021). Combining QTL mapping and transcriptomics to decipher the genetic architecture of phenolic compounds metabolism in the conifer white spruce. Frontiers in Plant Science, 12, 675108.
Li, J., Stoddard, T. J., Demorest, Z. L., Lavoie, P. O., Luo, S., Clasen, B. M., Cedrone, F., Ray, E.E., Coffman, A.P., Daulhac, A. & Yabandith, A. (2016). Multiplexed, targeted gene editing in Nicotiana benthamiana for glyco‐engineering and monoclonal antibody production. Plant Biotechnology Journal, 14(2), 533-542.
Liang, Z., Zhang, K., Chen, K., & Gao, C. (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics, 41(2), 63-68.
Shi-Ping, L. I. U., Xin, L. I., Chao-Yang, W. A. N. G., Xiang-Hua, L. I., & Yu-Qing, H. E. (2003). Improvement of resistance to rice blast in Zhenshan 97 by molecular marker-aided selection. Journal of Integrative Plant Biology, 45(11), 1346.
Mackill, D. J., Collard, B. C. Y., Neeraja, C. N., Rodriguez, R. M., Heuer, S., & Ismail, A. M. (2007). QTLs in rice breeding: examples for abiotic stresses. In Rice Genetics V (pp. 155-167).
Maibam, A., Tyagi, A., Satheesh, V., Mahato, A. K., Jain, N., Raje, R. S., Rao, A. R., Gaikwad, K., & Singh, N. K. (2015). Genome-wide identification and characterization of heat shock factor genes from pigeonpea (Cajanus cajan). Molecular Plant Breeding, 6(7).
Malathi, P., Muzammil, S. A., Krishnaveni, D., Balachandran, S. M., & Mangrauthia, S. K. (2019). Coat protein 3 of Rice tungro spherical virus is the key target gene for development of RNAi mediated tungro disease resistance in rice. Agri Gene, 12, 100084.
Malik, H. J., Raza, A., Amin, I., Scheffler, J. A., Scheffler, B. E., Brown, J. K., & Mansoor, S. (2016). RNAi-mediated mortality of the whitefly through transgenic expression of double-stranded RNA homologous to acetylcholinesterase and ecdysone receptor in tobacco plants. Scientific Reports, 6(1), 38469.
Mamta, Reddy, K. R. K., & Rajam, M. V. (2016). Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato. Plant Molecular Biology, 90, 281-292.
Mezzetti, B., Smagghe, G., Arpaia, S., Christiaens, O., Dietz-Pfeilstetter, A., Jones, H., Kostov, K., Sabbadini, S., Opsahl-Sorteberg, H. G., Ventura, V. & Taning, C. N. T. (2020). RNAi: What is its position in agriculture? Journal of Pest Science, 93(4), 1125-1130.
Mickelbart, M. V., Hasegawa, P. M., & Bailey-Serres, J. (2015). Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetics, 16(4), 237-251.
Mohapatra, C., Chand, R., Singh, V. K., Singh, A. K., & Kushwaha, C. (2016). Identification and characterisation of Mlo genes in pea (Pisum sativum L.) vis-à-vis validation of Mlo gene-specific markers. Turkish Journal of Biology, 40(1), 184-195.
Muchero, W., Ehlers, J. D., Close, T. J., & Roberts, P. A. (2009). Mapping QTL for drought stress-induced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp.]. Theoretical and Applied Genetics, 118, 849-863.
Muchero, W., Ehlers, J. D., & Roberts, P. A. (2010). QTL analysis for resistance to foliar damage caused by Thrips tabaci and Frankliniella schultzei (Thysanoptera: Thripidae) feeding in cowpea [Vigna unguiculata (L.) Walp.]. Molecular Breeding, 25, 47-56.
Nain, V., Sahi, S., & Verma, A. (2010). CPP-ZFN: a potential DNA-targeting anti-malarial drug. Malaria journal, 9, 1-6.
Hu, Y., Wu, Q., Peng, Z., Sprague, S. A., Wang, W., Park, J., Akhunov, E., Jagadish, K. S., Nakata, P. A., Cheng, N. & Hirschi, K.D. (2017). Silencing of OsGRXS17 in rice improves drought stress tolerance by modulating ROS accumulation and stomatal closure. Scientific reports, 7(1), 15950.
Nutan, K. K., Kumar, G., Singla-Pareek, S. L., & Pareek, A. (2018). A salt overly sensitive pathway member from Brassica juncea BjSOS3 can functionally complement ΔAtsos3 in Arabidopsis. Current genomics, 19(1), 60.
Parry, M. A., Madgwick, P. J., Bayon, C., Tearall, K., Hernandez-Lopez, A., Baudo, M., Rakszegi, M., Hamada, W., Al-Yassin, A., Ouabbou, H. & Labhilili, M. (2009). Mutation discovery for crop improvement. Journal of Experimental Botany, 60(10), 2817-2825.
Puria, R., Sahi, S., & Nain, V. (2012). HER2+ breast cancer therapy: by CPP-ZFN mediated targeting of mTOR? Technology in cancer research & treatment, 11(2), 175-180.
Ross, J. P., Dion, P. A., & Rouleau, G. A. (2020). Exome sequencing in genetic disease: recent advances and considerations. F1000Research, 9.
Roychowdhury, R., & Tah, J. (2013). Mutagenesis—A potential approach for crop improvement. Crop improvement: new approaches and modern techniques, 149-187.
Shoup Rupp, J. L., Cruz, L. F., Trick, H. N., & Fellers, J. P. (2016). RNAi‐Mediated, Stable Resistance to Triticum mosaic virus in Wheat. Crop Science, 56(4), 1602-1610.
Salava, H., Thula, S., Mohan, V., Kumar, R., & Maghuly, F. (2021). Application of genome editing in tomato breeding: Mechanisms, advances, and prospects. International Journal of Molecular Sciences, 22(2), 682.
Sanju, S., Siddappa, S., Thakur, A., Shukla, P. K., Srivastava, N., Pattanayak, D., Sharma, S. & Singh, B.P. (2015). Host-mediated gene silencing of a single effector gene from the potato pathogen Phytophthora infestans imparts partial resistance to late blight disease. Functional & integrative genomics, 15, 697-706.
Schneider, K., Schiermeyer, A., Dolls, A., Koch, N., Herwartz, D., Kirchhoff, J., Fischer, R., Russell, S.M., Cao, Z., Corbin, D.R. & Sastry‐Dent, L. (2016). Targeted gene exchange in plant cells mediated by a zinc finger nuclease double cut. Plant Biotechnology Journal, 14(4), 1151-1160.
Sekhar, K., Priyanka, B., Reddy, V. D., & Rao, K. V. (2010). Isolation and characterization of a pigeonpea cyclophilin (CcCYP) gene, and its over‐expression in Arabidopsis confers multiple abiotic stress tolerance. Plant, cell & environment, 33(8), 1324-1338.
Senthilraja, C., Gurivi Reddy, M., Rajeswaran, J., Kokiladevi, E., & Velazhahan, R. (2018). RNA interference-mediated resistance to Tobacco streak virus in transgenic peanut. Australasian Plant Pathology, 47, 227-230.
Shan, Q., Zhang, Y., Chen, K., Zhang, K., & Gao, C. (2015). Creation of fragrant rice by targeted knockout of the Os BADH 2 gene using TALEN technology. Plant biotechnology journal, 13(6), 791-800.
Singh, B., Mishra, S., Bohra, A., Joshi, R., & Siddique, K. H. (2018). Crop phenomics for abiotic stress tolerance in crop plants. In Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants (pp. 277-296). Academic Press.
Singh, S., Sidhu, J. S., Huang, N., Vikal, Y., Li, Z., Brar, D. S., Dhaliwal, H. S., & Khush, G. S. (2001). Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theoretical and Applied Genetics, 102, 1011-1015.
Singh, D., Chaudhary, P., Taunk, J., Singh, C. K., Chinnusamy, V., Sevanthi, A. M., Singh, V. J., & Pal, M. (2024). Targeting Induced Local Lesions in Genomes (TILLING): Advances and opportunities for fast tracking crop breeding. Critical Reviews in Biotechnology, 44(5), 817-836.
Siyal, A. L., Sial, S., Hossain, A., & Chang, A. G. (2024). Targeting Induced Local Lesions in Genomes: A Transgenic Approach for the Improvement of Desirable Crop in the Current Era of the Changing Climate. Food Production, Diversity, and Safety Under Climate Change, 223-233.
Soda, N., Gupta, B. K., Anwar, K., Sharan, A., Govindjee, Singla-Pareek, S. L., & Pareek, A. (2018). Rice intermediate filament, OsIF, stabilizes photosynthetic machinery and yield under salinity and heat stress. Scientific Reports, 8(1), 4072.
Tarantino, L. M., & Eisener-Dorman, A. F. (2012). Forward genetic approaches to understanding complex behaviors. Behavioral Neurogenetics, 25-58.
Tiwari, I. M., Jesuraj, A., Kamboj, R., Devanna, B. N., Botella, J. R., & Sharma, T. R. (2017). Host delivered RNAi, an efficient approach to increase rice resistance to sheath blight pathogen (Rhizoctonia solani). Scientific reports, 7(1), 7521.
Uddin, F., Rudin, C. M., & Sen, T. (2020). CRISPR gene therapy: applications, limitations, and implications for the future. Frontiers in oncology, 10, 1387.
Van Berloo, R., Aalbers, H., Werkman, A., & Niks, R. E. (2001). Resistance QTL confirmed through development of QTL-NILs for barley leaf rust resistance. Molecular Breeding, 8, 187-195.
Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., Liu, Y.G., & Zhao, K. (2016). Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PloS one, 11(4), e0154027.
Wang, W., Wang, W., Wu, Y., Li, Q., Zhang, G., Shi, R., Yang, J., Wang, Y., & Wang, W. (2020). The involvement of wheat U‐box E3 ubiquitin ligase TaPUB1 in salt stress tolerance. Journal of Integrative Plant Biology, 62(5), 631-651.
Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., & Qiu, J. L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature biotechnology, 32(9), 947-951.
Yin, X., Huang, L., Wang, M., Cui, Y., & Xia, X. (2017). OsDSR-1, a calmodulin-like gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). Molecular Breeding, 37, 1-13.
Zakhrabekova, S., Gough, S. P., Lundh, L., & Hansson, M. (2013). Functional genomics and forward and reverse genetics approaches for identification of important QTLs in plants. Proc. Azerbaijan Natl. Acad. Sci., 68, 23-28.
Zhang, X. H., Tee, L. Y., Wang, X. G., Huang, Q. S., & Yang, S. H. (2015). Off-target effects in CRISPR/Cas9-mediated genome engineering. Molecular Therapy-Nucleic Acids, 4.
Zhang, Y., Zhang, F., Li, X., Baller, J. A., Qi, Y., Starker, C. G., Bogdanove, A. J., & Voytas, D. F. (2013). Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant physiology, 161(1), 20-27.
Zhou, R., Zhu, Z., Kong, X., Huo, N., Tian, Q., Li, P., Jin, C. Y., Dong, Y. C., & Jia, J. (2005). Development of wheat near-isogenic lines for powdery mildew resistance. Theoretical and Applied Genetics, 110, 640-648.
Zhu, L., Zhu, J., Liu, Z., Wang, Z., Zhou, C., & Wang, H. (2017). Host-induced gene silencing of rice blast fungus Magnaporthe oryzae pathogenicity genes mediated by the brome mosaic virus. Genes, 8(10), 241.
Zhu, M., Meng, X., Cai, J., Li, G., Dong, T., & Li, Z. (2018). Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato. BMC plant biology, 18, 1-14.