Advances in Plant Biotechnology (Volume 1) | Doi : 10.37446/volbook032024/83-92

PAID ACCESS | Published on : 02-Oct-2024

Molecular Markers: A First Step Towards Molecular Breeding for Crop Improvement

  • Rakesh Kumar Yadav
  • ICAR-Indian Institute of soybean Research, Indore, Madhya Pradesh, India.
  • Ruchi Asati
  • Rani Lakshmi Bai Central Agricultural University, Jhasni, Uttar Pradesh, India.
  • Dipankar Barman
  • ICAR-Indian Institute of soybean Research, Indore, Madhya Pradesh, India.
  • Prabhat Chaudhary
  • ICAR-Indian Institute of soybean Research, Indore, Madhya Pradesh, India.
  • Manisha Rameshrao Patil
  • ICAR-Indian Institute of soybean Research, Indore, Madhya Pradesh, India.
  • Harsha Shrivastava
  • ICAR-Indian Institute of soybean Research, Indore, Madhya Pradesh, India.
  • Shreya Verma
  • ICAR-Indian Institute of soybean Research, Indore, Madhya Pradesh, India.

Abstract

DNA markers allowed marker-assisted selection, which increased the output and precision of traditional plant breeding. MAS has accelerated and improved the methodology of plant breeding, helping plant breeders all around the world. This chapter explores the principles, types, and applications of molecular markers in crop breeding programmes. Molecular markers, such as RFLPs, RAPD, AFLPs, SNPs and SSRs, offer advantages such as high reproducibility, abundance, and genome-wide coverage. This tactic has been effectively employed in various crops for characters for instance disease resistance, abiotic stress tolerance, and quality attributes. In addition to marker assisted selection, highly polymorphic molecular markers are produced for gene mapping, genetic diversity estimate, crop development and phylogeny, heterosis investigation, evaluation of diploid/haploid crops, and genotyping of cultivars.

Keywords

Abiotic stress, Crop breeding, DNA, Heterosis, MAS, Molecular markers

References

  • Adlak, T., Tiwari, S., Rathore, M. S., Tripathi, N., Tiwari, P. N., & Tripathi, M. K. (2023). Biotechnological approaches for genetic improvement of crops. book: Cutting Edge Research in Biology7, 63-84.

    Ahmar, S., Gill, R. A., Jung, K. H., Faheem, A., Qasim, M. U., Mubeen, M., & Zhou, W. (2020). Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. International journal of molecular sciences21(7), 2590.

    Asati, R., Tripathi, M. K., Tiwari, S., Yadav, R. K., & Tripathi, N. (2022). Molecular breeding and drought tolerance in chickpea. Life12(11), 1846.

    Bhawar, P. C., Tiwari, S., Tripathi, M. K., Tomar, R. S., & Sikarwar, R. S. (2020). Screening of groundnut germplasm for foliar fungal diseases and population structure analysis using gene based SSR markers. Current Journal of Applied Science and Technology39(2), 75-84.

    Bose, J., Munns, R., Shabala, S., Gilliham, M., Pogson, B., & Tyerman, S. D. (2017). Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes. Journal of Experimental Botany68(12), 3129-3143.

    Collard, B. C., Jahufer, M. Z. Z., Brouwer, J. B., & Pang, E. C. K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica142, 169-196.

    Doebley, J., Stec, A., & Gustus, C. (1995). teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics141(1), 333-346.

    Eathington, S. R., Crosbie, T. M., Edwards, M. D., Reiter, R. S., & Bull, J. K. (2007). Molecular markers in a commercial breeding program. Crop Science47, S-154.

    Francia, E., Tacconi, G., Crosatti, C., Barabaschi, D., Bulgarelli, D., Dall’Aglio, E., & Valè, G. (2005). Marker assisted selection in crop plants. Plant Cell, Tissue and Organ Culture82, 317-342.

    Goddard, M. E., & Hayes, B. J. (2007). Genomic selection. Journal of Animal breeding and Genetics124(6), 323-330.

    Gupta, P. K., Rustgi, S., & Mir, R. R. (2008). Array-based high-throughput DNA markers for crop improvement. Heredity101(1), 5-18.

    Hailu, G., & Asfere, Y. (2020). The role of molecular markers in crop improvement and plant breeding programs: a. Agric. J15, 171-175.

    Hasan, N., Choudhary, S., Naaz, N., Sharma, N., & Laskar, R. A. (2021). Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. Journal of Genetic Engineering and Biotechnology19(1), 128.

    Ingvarsson, P. K., & Street, N. R. (2011). Association genetics of complex traits in plants. New Phytologist189(4), 909-922.

    Jiang, G. L. (2013). Molecular markers and marker-assisted breeding in plants. Plant breeding from laboratories to fields3, 45-83.

    Jones, N., Ougham, H., & Thomas, H. (1997). Markers and mapping: we are all geneticists now. The New Phytologist137(1), 165-177.

    Mishra, N., Tripathi, M. K., Tiwari, S., Tripathi, N., & Sikarwar, R. S. (2022). Evaluation of qualitative trait based variability among soybean genotypes. The Pharma Innovation11(9), 1115-1121.

    Mohler, V., & Singrün, C. (2004). General considerations: marker-assisted selection. In Molecular marker systems in plant breeding and crop improvement (pp. 305-317). Berlin, Heidelberg: Springer Berlin Heidelberg.

    Newell, M. A., & Jannink, J. L. (2014). Genomic selection in plant breeding. Crop breeding: Methods and protocols, 117-130.

    Parmar, A., Tripathi, M. K., Tiwari, S., Tripathi, N., Parihar, P., & Pandya, R. K. (2022). Characterization of pearl millet [Pennisetum glaucum (L.) R Br.] genotypes against downey mildew disease employing disease indexing and ISSR markers. Octa J. Biosci10(2), 134-142.

    Pingali, P. L. (2012). Green revolution: impacts, limits, and the path ahead. Proceedings of the national academy of sciences109(31), 12302-12308.

    Ribaut, J. M., & Betrán, J. (1999). Single large-scale marker-assisted selection (SLS-MAS). Molecular breeding5, 531-541.

    Ribaut, J. M., Sawkins, M. C., Bänziger, M., Vargas, M., Huerta, E., Martinez, C., & Moreno, M. (2004). Marker-assisted selection in tropical maize based on consensus map, perspectives, and limitations. Resilient Crops for Water Limited Environments267.

    Sajib, M. S., Shahidullah, S. M., Rabbani, M. G., & Ali, M. A. (2016). Use of molecular markers for crop improvement: a review. International Journal of Scientific & Engineering Research, 7(6), 1429-1441.

    Selvakumari, E., Jenifer, J., Priyadharshini, S., et al., 2017. Application of DNA fingerprinting for plant identification. Journal Academia and Industrial Research, 5, 10.

    Semagn, K., Bjørnstad, A., & Ndjiondjop, M.N. (2006). An overview of molecular marker methods for plants. African Journal Biotechnology, (2540), 25–68.

    Shakil, S.K., Sultana, S., Hasan, M.M., Hossain, M.M., Ali, M.S, et al., (2015). SSR marker based genetic diversity analysis of modern rice varieties and coastal landraces in Bangladesh. Indian journal of Biotechnology, 14, 33-41.

    Tanksley, S.D., & McCouch, S.R. (1997). Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 277(5329), 1063-1066.

    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature418(6898), 671-677.

    Tiwari, P.N., Tiwari, S., Sapre, S., Babbar, A., Tripathi, N., Tiwari, S.& Tripathi, M.K. (2023). Prioritization of microsatellite markers linked with drought tolerance associated traits in chickpea (Cicer arietinum L.). Legume Research. DOI:10.18805/LR-5191

    Tiwari, S., Kumar, N., Pramanik, A., Joshi, E., Sasode, D. S., Sikarwar, R. S., ... & Singh, A. K. (2018). Breeding for foliar disease resistance in groundnut using conventional and molecular approaches. Proceedings of PSMB15, 56-62.

    Tripathi, N., Tripathi, M.K., Tiwari, S.& Payasi, D.K. (2022). Molecular breeding to overcome biotic stresses in soybean: update. Plants (Basel). 11(15):1967. doi: 10.3390/plants11151967.

    Verma, R., Tripathi, M. K., Tiwari, S., Pandya, R. K., Tripathi, N., & Parihar, P. (2021). Screening of pearl millet [Pennisetum glaucum (L.) R. Br.] genotypes against blast disease on the basis of disease indexing and gene specific SSR markers. Int J Curr Microbiol Appl Sci10(02), 1108-1117.

    Vignal, A., Milan, D., SanCristobal, M., & Eggen, A. (2002). A review on SNP and other types of molecular markers and their use in animal genetics. Genetics selection evolution34(3), 275-305.

    Xu, Y., Huang, L., Ji, D., Chen, C., Zheng, H., &Xie, C. (2015). Construction of a dense genetic linkage map and mapping quantitative trait loci for economic traits of a doubled haploid population of Pyropiahaitanensis (Bangiales, Rhodophyta). BMC plant biology, 15(1), 228.

    Yadav, R. K., Tripathi, M. K., Tiwari, S., Tripathi, N., Asati, R., Chauhan, S., ... & Payasi, D. K. (2023). Genome editing and improvement of abiotic stress tolerance in crop plants. Life13(7), 1456.

    Yadav, R. K., Tripathi, M. K., Tiwari, S., Tripathi, N., Asati, R., Patel, V., ... & Payasi, D. K. (2023). Breeding and genomic approaches towards development of fusarium wilt resistance in chickpea. Life13(4), 988.

    Yadav, R. K., Tripathi, M. K., Tiwari, S., Asati, R., Chauhan, S., Tripathi, N., ... & Yasin, M. (2023). DUS-Based Morphological Profiling and Categorization of Chickpea (Cicer arietinum L.) Genotypes. Current Journal of Applied Science and Technology42(40), 20-36.

    Zhang, Q., Chen, Q., Wang, S., Hong, Y., & Wang, Z. (2016). Rice and breeding programs. Rice, 9(1), 58.