Advances in Crop Breeding | Doi : 10.37446/edibook072024/128-140

PAID ACCESS | Published on : 31-Dec-2024

Nanotechnology and its Applications in Crop Improvement

  • Abburu Pravallika
  • Department of Agronomy, S.V. Agricultural College, Tirupati, Andhra Pradesh, India.
  • Meka Kalyani
  • Department of Agronomy, S.V. Agricultural College, Tirupati, Andhra Pradesh, India.
  • Bokka Navyashika
  • Department of Agronomy, S.V. Agricultural College, Tirupati, Andhra Pradesh, India.
  • Pabolu Tejasree
  • Department of Agronomy, S.V. Agricultural College, Tirupati, Andhra Pradesh, India.

Abstract

Nanotechnology is increasingly recognised as a transformative force in the food industry and agriculture. Nanoparticles possess unique properties, including a high surface-to-volume ratio, small size, enhanced solubility and distinct optical, chemical, and magnetic characteristics, which make them highly beneficial in agriculture. The integration of nanotechnology in agriculture is gaining importance due to its potential to reduce agricultural inputs, improve food quality and nutritional content and prolong the shelf life and freshness of food products. Nanomaterials are utilised in preservation and packaging to prevent gas penetration and enhance the absorption of micronutrients and antioxidants. These nanoparticles have documented positive effects on crop plants, significantly enhancing seed germination rates, shoot and root lengths, fruit yields, and metabolite content. They also positively influence biochemical parameters crucial for plant growth and development, such as enhancing photosynthetic rates and nitrogen use efficiency across various crops. Nanoscale materials offer advanced capabilities, including programmed, time-controlled, target-specific, and self-regulated functions. Engineered nanoparticles (ENPs) enable precise, "on-demand" delivery of agrochemicals, meeting nutritional needs or protecting against pathogens and pests while minimising the negative impacts of traditional agrochemicals on both plants and the environment. Moreover, nanoparticles enable the precise delivery of diverse phytoactive molecules, such as proteins and nucleotides, facilitating the modulation of plant metabolism and genetic modifications. This targeted approach opens up new possibilities for enhancing plant traits and improving agricultural productivity. In summary, nanotechnology in agriculture holds immense promise for sustainable and efficient crop production, with applications ranging from disease suppression and crop growth enhancement to precision farming and advanced gene transfer techniques.

Keywords

Nanotechnology, Nanoparticles, Engineered particles

References

  • Abobatta, W. F. (2018). Nanotechnology application in agriculture. Acta Scientific Agriculture, 2(6).

    Al-Juthery, H. W., Lahmod, N. R., & Al-Taee, R. A. (2021, April). Intelligent, nano-fertilizers: A new technology for improvement nutrient use efficiency (article review). In IOP Conference Series: Earth and Environmental Science (Vol. 735, No. 1, p. 012086). IOP Publishing.

    Banerjee, A., Sarkar, A., Acharya, K., & Chakraborty, N. (2021). Nanotechnology: an emerging hope in crop improvement. Letters in Applied Nano Bioscience10(4), 2784-2803.

    Barik, T. K., Sahu, B., & Swain, V. (2008). Nanosilica-from medicine to pest control. Parasitology Research103, 253-258.

    bin Hussein, M. Z., Zainal, Z., Yahaya, A. H., & Foo, D. W. V. (2002). Controlled release of a plant growth regulator, α-naphthalene acetate, from the lamella of Zn–Al-layered double hydroxide nanocomposite. Journal of Controlled Release82(2-3), 417-427.

    Canas, J. E., Long, M., Nations, S., Vadan, R., Dai, L., Luo, M., Ambikapathi, R., Lee, E. H., & Olszyk, D. (2008). Effects of functionalized and nonfunctionalized single‐walled carbon nanotubes on root elongation of select crop species. Environmental Toxicology and Chemistry: An International Journal27(9), 1922-1931.

    Chandra, S., Chakraborty, N., Dasgupta, A., Sarkar, J., Panda, K., & Acharya, K. (2015). Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Scientific Reports5(1), 15195.

    Chinnamuthu, C. R., & Boopathi, P. M. (2009). Nanotechnology and agroecosystem. Madras Agricultural Journal96(jan-jun), 1.

    Chinnamuthu, C. R., & Kokiladevi, E. (2007). Weed management through nanoherbicides. Application of Nanotechnology in Agriculture10, 978-971.

    Choy, J. H., Choi, S. J., Oh, J. M., & Park, T. (2007). Clay minerals and layered double hydroxides for novel biological applications. Applied Clay Science36(1-3), 122-132.

    Cui, H., Zhang, P., Gu, W., & Jiang, J. (2009). Application of anatasa TiO2 sol derived from peroxotitannic acid in crop diseases control and growth regulation. In NSTI-Nanotech (Vol. 2, pp. 286-289).

    de Oliveira, J. L., Campos, E. V. R., Bakshi, M., Abhilash, P. C., & Fraceto, L. F. (2014). Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnology Advances32(8), 1550-1561.

    DeRosa, M. C., Monreal, C., Schnitzer, M., Walsh, R., & Sultan, Y. (2010). Nanotechnology in fertilizers. Nature Nanotechnology5(2), 91-91.

    Dimkpa, C. O., McLean, J. E., Britt, D. W., & Anderson, A. J. (2013). Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearumBiometals26, 913-924.

    Ebert, T. A., Taylor, R. A. J., Downer, R. A., & Hall, F. R. (1999). Deposit structure and efficacy of pesticide application. 1: Interactions between deposit size, toxicant concentration and deposit number. Pesticide Science55(8), 783-792.

    Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A., & Rai, M. (2009). Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine: Nanotechnology, Biology and Medicine5(4), 382-386.

    Galbraith, D. W. (2007). Silica breaks through in plants. Nature Nanotechnology2(5), 272-273.

    Gaur, P. K., Pal, H., Puri, D., Kumar, N., & Shanmugam, S. K. (2020). Formulation and development of hesperidin loaded solid lipid nanoparticles for diabetes. Biointerface Research in Applied Chemistry10, 4728-4733.

    Ghormade, V., Deshpande, M. V., & Paknikar, K. M. (2011). Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology Advances29(6), 792-803.

    Giannousi, K., Avramidis, I., & Dendrinou-Samara, C. (2013). Synthesis, characterization and evaluation of copper-based nanoparticles as agrochemicals against Phytophthora infestans. RSC Advances3(44), 21743-21752.

    Goldwasser, Y., Eizenberg, H., Golan, S., & Kleifeld, Y. (2003). Control of Orobanche crenata and Orobanche aegyptiaca in parsley. Crop Protection22(2), 295-305.

    Grunert, K. G. (2005). Food quality and safety: consumer perception and demand. European Review of Agricultural Economics32(3), 369-391.

    He, L., Liu, Y., Mustapha, A., & Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansumMicrobiological Research166(3), 207-215.

    Jo, Y. K., Kim, B. H., & Jung, G. (2009). Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Disease93(10), 1037-1043.

    Kanjana, D. (2015). Potential applications of nanotechnology in major agriculture divisions-A Review. International Journal of Agriculture, Environment and Biotechnology8(3), 699-714.

    Kashyap, P. L., Xiang, X., & Heiden, P. (2015). Chitosan nanoparticle-based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules77, 36-51.

    Khot, L. R., Sankaran, S., Maja, J. M., Ehsani, R., & Schuster, E. W. (2012). Applications of nanomaterials in agricultural production and crop protection: a review. Crop Protection35, 64-70.

    Kumar, P. (2011). Nanotechnology in agriculture. Financing Agriculture, 43(10), 8-10.

    Lamsal, K., Kim, S. W., Jung, J. H., Kim, Y. S., Kim, K. S., & Lee, Y. S. (2011). Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology39(3), 194-199.

    Mout, R., Ray, M., Yesilbag Tonga, G., Lee, Y. W., Tay, T., Sasaki, K., & Rotello, V. M. (2017). Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano11(3), 2452-2458.

    Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., & Kumar, D. S. (2010). Nanoparticulate material delivery to plants. Plant Science179(3), 154-163.

    Nel, A., Xia, T., Madler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science311(5761), 622-627.

    Paret, M. L., Palmateer, A. J., & Knox, G. W. (2013a). Evaluation of a light-activated nanoparticle formulation of titanium dioxide with zinc for management of bacterial leaf spot on rosa ‘Noare’. Hort Science48(2), 189-192.

    Paret, M. L., Vallad, G. E., Averett, D. R., Jones, J. B., & Olson, S. M. (2013b). Photocatalysis: effect of light-activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology103(3), 228-236.

    Petosa, A. R., Rajput, F., Selvam, O., Öhl, C., & Tufenkji, N. (2017). Assessing the transport potential of polymeric nanocapsules developed for crop protection. Water Research111, 10-17.

    Pirzadah, T. B., Malik, B., Maqbool, T., & Rehman, R. U. (2019). Development of nano-bioformulations of nutrients for sustainable agriculture. Nanobiotechnology in Bioformulations, 381-394.

    Prasad, R., Kumar, V., & Prasad, K. S. (2014). Nanotechnology in sustainable agriculture: present concerns and future aspects. African Journal of Biotechnology13(6), 705-713.

    Rai, M. K., Deshmukh, S. D., Ingle, A. P., & Gade, A. K. (2012). Silver nanoparticles: the powerful nano weapon against multidrug‐resistant bacteria. Journal of Applied Microbiology112(5), 841-852.

    Scott, N., & Chen, H. (2013). Nanoscale science and engineering for agriculture and food systems. Industrial Biotechnology9(1), 17-18.

    Sertova, N. M. (2015). Application of nanotechnology in detection of mycotoxins and in agricultural sector. Journal of Central European Agriculture, 16(2), 117-130.

    Servin, A., Elmer, W., Mukherjee, A., Torre-Roche, R. D., Hamdi, H., White, J. C., Bindraban, P., & Dimkpa, C. (2015). A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research, 17, 1-21.

    Singh, J., Dutta, T., Kim, K. H., Rawat, M., Samddar, P., & Kumar, P. (2018). ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of Nanobiotechnology16, 1-24.

    Srilatha, B. A. R. N. (2011). Nanotechnology in agriculture. Journal of Nanomedicine & Nanotechnology, 2(7), 5.

    Tiwari, D. K., Dasgupta-Schubert, N., Villaseñor Cendejas, L. M., Villegas, J., Carreto Montoya, L., & Borjas García, S. E. (2014). Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Applied Nanoscience4, 577-591.

    Torney, F., Trewyn, B. G., Lin, V. S. Y., & Wang, K. (2007). Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology2(5), 295-300.

    Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S. A., Rehman, H., Ashraf, I., & Sanaullah, M. (2020). Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of the Total Environment, 721, 137778.

    Wang, L., Li, Z., Zhang, G., Dong, J., & Eastoe, J. (2007). Oil-in-water nanoemulsions for pesticide formulations. Journal of Colloid and Interface Science, 314(1), 230-235.

    War, J. M., Fazili, M. A., Mushtaq, W., Wani, A. H., & Bhat, M. Y. (2020). Role of nanotechnology in crop improvement. Nanobiotechnology in Agriculture: An Approach Towards Sustainability, 63-97.

    Wu, L., & Liu, M. (2008). Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water-retention. Carbohydrate Polymers72(2), 240-247.

    Xu, L., Liu, Y., Bai, R., & Chen, C. (2010). Applications and toxicological issues surrounding nanotechnology in the food industry. Pure and Applied Chemistry, 82(2), 349-372.

    Zhang, X., Zhang, J., & Zhu, K. Y. (2010). Chitosan/double‐stranded RNA nanoparticle‐mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Molecular Biology19(5), 683-693.