Nanotechnology is increasingly recognised as a transformative force in the food industry and agriculture. Nanoparticles possess unique properties, including a high surface-to-volume ratio, small size, enhanced solubility and distinct optical, chemical, and magnetic characteristics, which make them highly beneficial in agriculture. The integration of nanotechnology in agriculture is gaining importance due to its potential to reduce agricultural inputs, improve food quality and nutritional content and prolong the shelf life and freshness of food products. Nanomaterials are utilised in preservation and packaging to prevent gas penetration and enhance the absorption of micronutrients and antioxidants. These nanoparticles have documented positive effects on crop plants, significantly enhancing seed germination rates, shoot and root lengths, fruit yields, and metabolite content. They also positively influence biochemical parameters crucial for plant growth and development, such as enhancing photosynthetic rates and nitrogen use efficiency across various crops. Nanoscale materials offer advanced capabilities, including programmed, time-controlled, target-specific, and self-regulated functions. Engineered nanoparticles (ENPs) enable precise, "on-demand" delivery of agrochemicals, meeting nutritional needs or protecting against pathogens and pests while minimising the negative impacts of traditional agrochemicals on both plants and the environment. Moreover, nanoparticles enable the precise delivery of diverse phytoactive molecules, such as proteins and nucleotides, facilitating the modulation of plant metabolism and genetic modifications. This targeted approach opens up new possibilities for enhancing plant traits and improving agricultural productivity. In summary, nanotechnology in agriculture holds immense promise for sustainable and efficient crop production, with applications ranging from disease suppression and crop growth enhancement to precision farming and advanced gene transfer techniques.
Nanotechnology, Nanoparticles, Engineered particles
Abobatta, W. F. (2018). Nanotechnology application in agriculture. Acta Scientific Agriculture, 2(6).
Al-Juthery, H. W., Lahmod, N. R., & Al-Taee, R. A. (2021, April). Intelligent, nano-fertilizers: A new technology for improvement nutrient use efficiency (article review). In IOP Conference Series: Earth and Environmental Science (Vol. 735, No. 1, p. 012086). IOP Publishing.
Banerjee, A., Sarkar, A., Acharya, K., & Chakraborty, N. (2021). Nanotechnology: an emerging hope in crop improvement. Letters in Applied Nano Bioscience, 10(4), 2784-2803.
Barik, T. K., Sahu, B., & Swain, V. (2008). Nanosilica-from medicine to pest control. Parasitology Research, 103, 253-258.
bin Hussein, M. Z., Zainal, Z., Yahaya, A. H., & Foo, D. W. V. (2002). Controlled release of a plant growth regulator, α-naphthalene acetate, from the lamella of Zn–Al-layered double hydroxide nanocomposite. Journal of Controlled Release, 82(2-3), 417-427.
Canas, J. E., Long, M., Nations, S., Vadan, R., Dai, L., Luo, M., Ambikapathi, R., Lee, E. H., & Olszyk, D. (2008). Effects of functionalized and nonfunctionalized single‐walled carbon nanotubes on root elongation of select crop species. Environmental Toxicology and Chemistry: An International Journal, 27(9), 1922-1931.
Chandra, S., Chakraborty, N., Dasgupta, A., Sarkar, J., Panda, K., & Acharya, K. (2015). Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Scientific Reports, 5(1), 15195.
Chinnamuthu, C. R., & Boopathi, P. M. (2009). Nanotechnology and agroecosystem. Madras Agricultural Journal, 96(jan-jun), 1.
Chinnamuthu, C. R., & Kokiladevi, E. (2007). Weed management through nanoherbicides. Application of Nanotechnology in Agriculture, 10, 978-971.
Choy, J. H., Choi, S. J., Oh, J. M., & Park, T. (2007). Clay minerals and layered double hydroxides for novel biological applications. Applied Clay Science, 36(1-3), 122-132.
Cui, H., Zhang, P., Gu, W., & Jiang, J. (2009). Application of anatasa TiO2 sol derived from peroxotitannic acid in crop diseases control and growth regulation. In NSTI-Nanotech (Vol. 2, pp. 286-289).
de Oliveira, J. L., Campos, E. V. R., Bakshi, M., Abhilash, P. C., & Fraceto, L. F. (2014). Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnology Advances, 32(8), 1550-1561.
DeRosa, M. C., Monreal, C., Schnitzer, M., Walsh, R., & Sultan, Y. (2010). Nanotechnology in fertilizers. Nature Nanotechnology, 5(2), 91-91.
Dimkpa, C. O., McLean, J. E., Britt, D. W., & Anderson, A. J. (2013). Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals, 26, 913-924.
Ebert, T. A., Taylor, R. A. J., Downer, R. A., & Hall, F. R. (1999). Deposit structure and efficacy of pesticide application. 1: Interactions between deposit size, toxicant concentration and deposit number. Pesticide Science, 55(8), 783-792.
Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A., & Rai, M. (2009). Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine: Nanotechnology, Biology and Medicine, 5(4), 382-386.
Galbraith, D. W. (2007). Silica breaks through in plants. Nature Nanotechnology, 2(5), 272-273.
Gaur, P. K., Pal, H., Puri, D., Kumar, N., & Shanmugam, S. K. (2020). Formulation and development of hesperidin loaded solid lipid nanoparticles for diabetes. Biointerface Research in Applied Chemistry, 10, 4728-4733.
Ghormade, V., Deshpande, M. V., & Paknikar, K. M. (2011). Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology Advances, 29(6), 792-803.
Giannousi, K., Avramidis, I., & Dendrinou-Samara, C. (2013). Synthesis, characterization and evaluation of copper-based nanoparticles as agrochemicals against Phytophthora infestans. RSC Advances, 3(44), 21743-21752.
Goldwasser, Y., Eizenberg, H., Golan, S., & Kleifeld, Y. (2003). Control of Orobanche crenata and Orobanche aegyptiaca in parsley. Crop Protection, 22(2), 295-305.
Grunert, K. G. (2005). Food quality and safety: consumer perception and demand. European Review of Agricultural Economics, 32(3), 369-391.
He, L., Liu, Y., Mustapha, A., & Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, 166(3), 207-215.
Jo, Y. K., Kim, B. H., & Jung, G. (2009). Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Disease, 93(10), 1037-1043.
Kanjana, D. (2015). Potential applications of nanotechnology in major agriculture divisions-A Review. International Journal of Agriculture, Environment and Biotechnology, 8(3), 699-714.
Kashyap, P. L., Xiang, X., & Heiden, P. (2015). Chitosan nanoparticle-based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules, 77, 36-51.
Khot, L. R., Sankaran, S., Maja, J. M., Ehsani, R., & Schuster, E. W. (2012). Applications of nanomaterials in agricultural production and crop protection: a review. Crop Protection, 35, 64-70.
Kumar, P. (2011). Nanotechnology in agriculture. Financing Agriculture, 43(10), 8-10.
Lamsal, K., Kim, S. W., Jung, J. H., Kim, Y. S., Kim, K. S., & Lee, Y. S. (2011). Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology, 39(3), 194-199.
Mout, R., Ray, M., Yesilbag Tonga, G., Lee, Y. W., Tay, T., Sasaki, K., & Rotello, V. M. (2017). Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano, 11(3), 2452-2458.
Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., & Kumar, D. S. (2010). Nanoparticulate material delivery to plants. Plant Science, 179(3), 154-163.
Nel, A., Xia, T., Madler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311(5761), 622-627.
Paret, M. L., Palmateer, A. J., & Knox, G. W. (2013a). Evaluation of a light-activated nanoparticle formulation of titanium dioxide with zinc for management of bacterial leaf spot on rosa ‘Noare’. Hort Science, 48(2), 189-192.
Paret, M. L., Vallad, G. E., Averett, D. R., Jones, J. B., & Olson, S. M. (2013b). Photocatalysis: effect of light-activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology, 103(3), 228-236.
Petosa, A. R., Rajput, F., Selvam, O., Öhl, C., & Tufenkji, N. (2017). Assessing the transport potential of polymeric nanocapsules developed for crop protection. Water Research, 111, 10-17.
Pirzadah, T. B., Malik, B., Maqbool, T., & Rehman, R. U. (2019). Development of nano-bioformulations of nutrients for sustainable agriculture. Nanobiotechnology in Bioformulations, 381-394.
Prasad, R., Kumar, V., & Prasad, K. S. (2014). Nanotechnology in sustainable agriculture: present concerns and future aspects. African Journal of Biotechnology, 13(6), 705-713.
Rai, M. K., Deshmukh, S. D., Ingle, A. P., & Gade, A. K. (2012). Silver nanoparticles: the powerful nano weapon against multidrug‐resistant bacteria. Journal of Applied Microbiology, 112(5), 841-852.
Scott, N., & Chen, H. (2013). Nanoscale science and engineering for agriculture and food systems. Industrial Biotechnology, 9(1), 17-18.
Sertova, N. M. (2015). Application of nanotechnology in detection of mycotoxins and in agricultural sector. Journal of Central European Agriculture, 16(2), 117-130.
Servin, A., Elmer, W., Mukherjee, A., Torre-Roche, R. D., Hamdi, H., White, J. C., Bindraban, P., & Dimkpa, C. (2015). A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research, 17, 1-21.
Singh, J., Dutta, T., Kim, K. H., Rawat, M., Samddar, P., & Kumar, P. (2018). ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of Nanobiotechnology, 16, 1-24.
Srilatha, B. A. R. N. (2011). Nanotechnology in agriculture. Journal of Nanomedicine & Nanotechnology, 2(7), 5.
Tiwari, D. K., Dasgupta-Schubert, N., Villaseñor Cendejas, L. M., Villegas, J., Carreto Montoya, L., & Borjas García, S. E. (2014). Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Applied Nanoscience, 4, 577-591.
Torney, F., Trewyn, B. G., Lin, V. S. Y., & Wang, K. (2007). Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology, 2(5), 295-300.
Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S. A., Rehman, H., Ashraf, I., & Sanaullah, M. (2020). Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of the Total Environment, 721, 137778.
Wang, L., Li, Z., Zhang, G., Dong, J., & Eastoe, J. (2007). Oil-in-water nanoemulsions for pesticide formulations. Journal of Colloid and Interface Science, 314(1), 230-235.
War, J. M., Fazili, M. A., Mushtaq, W., Wani, A. H., & Bhat, M. Y. (2020). Role of nanotechnology in crop improvement. Nanobiotechnology in Agriculture: An Approach Towards Sustainability, 63-97.
Wu, L., & Liu, M. (2008). Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water-retention. Carbohydrate Polymers, 72(2), 240-247.
Xu, L., Liu, Y., Bai, R., & Chen, C. (2010). Applications and toxicological issues surrounding nanotechnology in the food industry. Pure and Applied Chemistry, 82(2), 349-372.
Zhang, X., Zhang, J., & Zhu, K. Y. (2010). Chitosan/double‐stranded RNA nanoparticle‐mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Molecular Biology, 19(5), 683-693.