Next-generation sequencing (NGS) has revolutionized crop improvement by providing high-throughput, cost-effective and rapid genotyping technologies. The NGS technology has revolutionized genomic research, enabling the sequencing of thousands of plant genomes. This has facilitated the identification of millions of new markers and agronomically important genes for crop improvement. This technology has significantly advanced our understanding of genetic diversity, gene function, and evolutionary relationships among organisms. In the field of agriculture, NGS has emerged as a powerful tool for crop improvement, offering unusual opportunities to enhance crop yield, quality, and sustainability. This chapter aims to give an overview of different generations of sequencing and its various applications in crop improvement.
ABI/SOLiD, Illumina/Solexa, Ion torrent, Next-generation sequencing, Pyrosequencing
Arabidopsis Genome Initiative (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408(6814), 796-815.
Barabaschi, D., Guerra, D., Lacrima, K., Laino, P., Michelotti, V., Urso, S., Vale, G., and Cattivelli, L. (2012). Emerging knowledge from genome sequencing of crop species. Mol. Biotechnol., 50(3), 250-266.
Bentley, D.R., Balasubramanian, S., Swerdlow, H.P., Smith, G.P., Milton, J., Brown, C.G., Hall, K.P., Evers, D.J., Barnes, C.L., Bignell, H.R., and Boutell, J.M. (2008). Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 456(7218), 53-59.
Chen, F., Su, L., Hu, S., Xue, J.Y., Liu, H., Liu, G., Jiang, Y., Du, J., Qiao, Y., Fan, Y. and Liu, H. (2021). A chromosome-level genome assembly of rugged rose (Rosa rugosa) provides insights into its evolution, ecology, and floral characteristics. Horticulture research, 8.
Du, H., Yu, Y., Ma, Y., Gao, Q., Cao, Y., Chen, Z., Ma, B., Qi, M., Li, Y., Zhao, X. and Wang, J. (2017). Sequencing and de novo assembly of a near complete indica rice genome. Nature communications, 8(1), 15324.
England, R. and Pettersson, M. (2005). Pyro Q-CpG™: quantitative analysis of methylation in multiple CpG sites by Pyrosequencing®. i-ii.
Feuillet, C., Leach, J. E., Rogers, J., Schnable, P. S., and Eversole, K. (2011). Crop genome sequencing: lessons and rationales. Trends plant sci., 16(2), 77-88.
Harris, T.D., Buzby, P.R., Babcock, H., Beer, E., Bowers, J., Braslavsky, I., Causey, M., Colonell, J., DiMeo, J., Efcavitch, J.W., and Giladi, E. (2008). Single-molecule DNA sequencing of a viral genome. Science, 320(5872), 106-109.
He, M., Chi, X., and Ren, J. (2021). Applications of Oxford nanopore sequencing in Schizosaccharomyces pombe. Yeast protocols, 97-116.
Hu, L., Xu, Z., Wang, M., Fan, R., Yuan, D., Wu, B., Wu, H., Qin, X., Yan, L., Tan, L. and Sim, S. (2019). The chromosome-scale reference genome of black pepper provides insight into piperine biosynthesis. Nature communications, 10(1), 4702.
International Rice Genome Sequencing Project (2005). The map-based sequence of the rice genome. Nature, 436, 793–800.
Kchouk, M., Gibrat, J. F., and Elloumi, M. (2017). Generations of sequencing technologies: from first to next generation. Biology and Medicine, 9(3).
Lin, G., He, C., Zheng, J., Koo, D.H., Le, H., Zheng, H., Tamang, T.M., Lin, J., Liu, Y., Zhao, M. and Hao, Y. (2021). Chromosome-level genome assembly of a regenerable maize inbred line A188. Genome biology, 22(1), 175.
Ma, Z., Zhang, Y., Wu, L., Zhang, G., Sun, Z., Li, Z., Jiang, Y., Ke, H., Chen, B., Liu, Z. and Gu, Q. (2021). High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement. Nature Genetics, 53(9), 1385-1391.
Maxam, A. M. and Gilbert, W. (1977). A new method for sequencing DNA. Proceedings of the National Academy of Sciences, 74(2), 560-564.
Roychoudhury, A. (2020). Next generation sequencing: prospects in plant breeding and crop improvement. SF J. Agri. Crop Manag. 2020; 1 (1), 1004.
Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the national academy of sciences, 74(12), 5463-5467.
Sansaloni, C., Petroli, C., Jaccoud, D., Carling, J., Detering, F., Grattapaglia, D., and Kilian, A. (2011). Diversity Arrays Technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. In BMC proceedings (Vol. 5, No. Suppl 7, p. P54). London: BioMed Central.
Shirasawa, K. and Ariizumi, T. (2024). Near-complete genome assembly of tomato (Solanum lycopersicum) cultivar Micro-Tom. Plant Biotechnology, 24-0522.
Singh, V. K., Singh, A. K., Singh, S., and Singh, B. D. (2015). Next-generation sequencing (NGS) tools and impact in plant breeding. Advances in plant breeding strategies: breeding, biotechnology and molecular tools, 563-612.
Steele, P. R., Hertweck, K. L., Mayfield, D., McKain, M. R., Leebens‐Mack, J., and Pires, J. C. (2012). Quality and quantity of data recovered from massively parallel sequencing: examples in Asparagales and Poaceae. Am. J. Bot., 99(2), 330-348.
Sun, Y., Shang, L., Zhu, Q. H., Fan, L., and Guo, L. (2022). Twenty years of plant genome sequencing: achievements and challenges. Trends Plant Sci., 27(4), 391-401.
Tlili, C., Djebbi, K., Elaguech, M. A., Bahri, M., Zhou, D., Shi, B., and Wang, D. (2022). Next-Generation DNA Sequencing: Ion Torrent Sequencers Versus Nanopore Technology. In Handbook of Biochips: Integrated Circuits and Systems for Biology and Medicine (pp. 651-666). New York, NY: Springer New York.
Treffer, R. and Deckert, V. (2010). Recent advances in single-molecule sequencing. Current opinion in biotechnology, 21(1), 4-11.
Unamba, C. I., Nag, A., and Sharma, R. K. (2015). Next generation sequencing technologies: the doorway to the unexplored genomics of non-model plants. Front. plant sci., 6, 1074. doi: 10.3389/fpls.2015.01074
Voelkerding, K. V., Dames, S. A., and Durtschi, J. D. (2009). Next-generation sequencing: from basic research to diagnostics. Clinical chemistry, 55(4), 641-658.
Wang, M. (2021). Next-Generation Sequencing (NGS). In: Pan, S., Tang, J. (eds) Clinical Molecular Diagnostics. Springer, Singapore. https://doi.org/10.1007/978-981-16-1037-0_23
Wang, M., Huang, J., Liu, S., Liu, X., Li, R., Luo, J., and Fu, Z. (2022). Improved assembly and annotation of the sesame genome. DNA Research, 29(6), dsac041.
Wei, Q., Wang, J., Wang, W., Hu, T., Hu, H., and Bao, C. (2020). A high-quality chromosome-level genome assembly reveals genetics for important traits in eggplant. Horticulture research, 7.
Xiao, M., Zhang, Y., Chen, X., Lee, E.J., Barber, C.J., Chakrabarty, R., Desgagné-Penix, I., Haslam, T.M., Kim, Y.B., Liu, E., and MacNevin, G. (2013). Transcriptome analysis based on next-generation sequencing of nonmodel plants producing specialized metabolites of biotechnological interest. J. Biotechnol. 166, 122–134. doi: 10.1016/j.jbiotec.2013.04.004
Xin, H., Ji, F., Wu, J., Zhang, S., Yi, C., Zhao, S., Cong, R., Zhao, L., Zhang, H. and Zhang, Z. (2023). Chromosome-scale genome assembly of marigold (Tagetes erecta L.): An ornamental plant and feedstock for industrial lutein production. Horticultural Plant Journal, 9(6), 1119-1130.
Yadav, P., Vaidya, E., Rani, R., Yadav, N. K., Singh, B. K., Rai, P. K., and Singh, D. (2016). Recent perspective of next generation sequencing: applications in molecular plant biology and crop improvement. Proc. Natl. Acad. Sci., India Section B: Biological Sciences, 88, 435-449.
Zhu, T., Wang, L., Rimbert, H., Rodriguez, J.C., Deal, K.R., De Oliveira, R., Choulet, F., Keeble‐Gagnère, G., Tibbits, J., Rogers, J. and Eversole, K. (2021). Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. The Plant Journal, 107(1), 303-314.