Advances in Plant Biotechnology (Volume 1) | Doi : 10.37446/volbook032024/69-82

PAID ACCESS | Published on : 02-Oct-2024

Next-generation Sequencing and its Application in Crop Improvement

  • Fahida P.K.
  • Dept. of Plant Breeding and Genetics, College of Agriculture, Vellanikkara, Kerala, Agricultural University, Thrissur, Kerala, India- 680656; Agricultural Research Station, Mannuthy, Kerala Agricultural University, Thrissur, Kerala, India- 680651
  • Kasireddy Sivasankarreddy
  • Dept. of Plant Breeding and Genetics, College of Agriculture, Vellanikkara, Kerala, Agricultural University, Thrissur, Kerala, India- 680656
  • Murshid Muhammed P.K.
  • ICAR-Directorate of Floricultural Research, Pune, Maharashtra, India- 411 036

Abstract

Next-generation sequencing (NGS) has revolutionized crop improvement by providing high-throughput, cost-effective and rapid genotyping technologies. The NGS technology has revolutionized genomic research, enabling the sequencing of thousands of plant genomes. This has facilitated the identification of millions of new markers and agronomically important genes for crop improvement. This technology has significantly advanced our understanding of genetic diversity, gene function, and evolutionary relationships among organisms. In the field of agriculture, NGS has emerged as a powerful tool for crop improvement, offering unusual opportunities to enhance crop yield, quality, and sustainability. This chapter aims to give an overview of different generations of sequencing and its various applications in crop improvement.

Keywords

ABI/SOLiD, Illumina/Solexa, Ion torrent, Next-generation sequencing, Pyrosequencing

References

  • Arabidopsis Genome Initiative (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thalianaNature408(6814), 796-815.

    Barabaschi, D., Guerra, D., Lacrima, K., Laino, P., Michelotti, V., Urso, S., Vale, G., and Cattivelli, L. (2012). Emerging knowledge from genome sequencing of crop species. Mol. Biotechnol.50(3), 250-266.

    Bentley, D.R., Balasubramanian, S., Swerdlow, H.P., Smith, G.P., Milton, J., Brown, C.G., Hall, K.P., Evers, D.J., Barnes, C.L., Bignell, H.R., and Boutell, J.M. (2008). Accurate whole human genome sequencing using reversible terminator chemistry. Nature456(7218), 53-59.

    Chen, F., Su, L., Hu, S., Xue, J.Y., Liu, H., Liu, G., Jiang, Y., Du, J., Qiao, Y., Fan, Y. and Liu, H. (2021). A chromosome-level genome assembly of rugged rose (Rosa rugosa) provides insights into its evolution, ecology, and floral characteristics. Horticulture research8.

    Du, H., Yu, Y., Ma, Y., Gao, Q., Cao, Y., Chen, Z., Ma, B., Qi, M., Li, Y., Zhao, X. and Wang, J. (2017). Sequencing and de novo assembly of a near complete indica rice genome. Nature communications8(1), 15324.

    England, R. and Pettersson, M. (2005). Pyro Q-CpG™: quantitative analysis of methylation in multiple CpG sites by Pyrosequencing®. i-ii.

    Feuillet, C., Leach, J. E., Rogers, J., Schnable, P. S., and Eversole, K. (2011). Crop genome sequencing: lessons and rationales. Trends plant sci.16(2), 77-88.

    Harris, T.D., Buzby, P.R., Babcock, H., Beer, E., Bowers, J., Braslavsky, I., Causey, M., Colonell, J., DiMeo, J., Efcavitch, J.W., and Giladi, E. (2008). Single-molecule DNA sequencing of a viral genome. Science320(5872), 106-109.

    He, M., Chi, X., and Ren, J. (2021). Applications of Oxford nanopore sequencing in Schizosaccharomyces pombeYeast protocols, 97-116.

    Hu, L., Xu, Z., Wang, M., Fan, R., Yuan, D., Wu, B., Wu, H., Qin, X., Yan, L., Tan, L. and Sim, S. (2019). The chromosome-scale reference genome of black pepper provides insight into piperine biosynthesis. Nature communications10(1), 4702.

    International Rice Genome Sequencing Project (2005). The map-based sequence of the rice genome. Nature, 436, 793–800.

    Kchouk, M., Gibrat, J. F., and Elloumi, M. (2017). Generations of sequencing technologies: from first to next generation. Biology and Medicine9(3).

    Lin, G., He, C., Zheng, J., Koo, D.H., Le, H., Zheng, H., Tamang, T.M., Lin, J., Liu, Y., Zhao, M. and Hao, Y. (2021). Chromosome-level genome assembly of a regenerable maize inbred line A188. Genome biology22(1), 175.

    Ma, Z., Zhang, Y., Wu, L., Zhang, G., Sun, Z., Li, Z., Jiang, Y., Ke, H., Chen, B., Liu, Z. and Gu, Q. (2021). High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement. Nature Genetics53(9), 1385-1391.

    Maxam, A. M. and Gilbert, W. (1977). A new method for sequencing DNA. Proceedings of the National Academy of Sciences74(2), 560-564.

    Roychoudhury, A. (2020). Next generation sequencing: prospects in plant breeding and crop improvement. SF J. Agri. Crop Manag. 2020; 1 (1)1004.

    Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the national academy of sciences74(12), 5463-5467.

    Sansaloni, C., Petroli, C., Jaccoud, D., Carling, J., Detering, F., Grattapaglia, D., and Kilian, A. (2011). Diversity Arrays Technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. In BMC proceedings (Vol. 5, No. Suppl 7, p. P54). London: BioMed Central.

    Shirasawa, K. and Ariizumi, T. (2024). Near-complete genome assembly of tomato (Solanum lycopersicum) cultivar Micro-Tom. Plant Biotechnology, 24-0522.

    Singh, V. K., Singh, A. K., Singh, S., and Singh, B. D. (2015). Next-generation sequencing (NGS) tools and impact in plant breeding. Advances in plant breeding strategies: breeding, biotechnology and molecular tools, 563-612.

    Steele, P. R., Hertweck, K. L., Mayfield, D., McKain, M. R., Leebens‐Mack, J., and Pires, J. C. (2012). Quality and quantity of data recovered from massively parallel sequencing: examples in Asparagales and Poaceae. Am. J. Bot.99(2), 330-348.

    Sun, Y., Shang, L., Zhu, Q. H., Fan, L., and Guo, L. (2022). Twenty years of plant genome sequencing: achievements and challenges. Trends Plant Sci.27(4), 391-401.

    Tlili, C., Djebbi, K., Elaguech, M. A., Bahri, M., Zhou, D., Shi, B., and Wang, D. (2022). Next-Generation DNA Sequencing: Ion Torrent Sequencers Versus Nanopore Technology. In Handbook of Biochips: Integrated Circuits and Systems for Biology and Medicine (pp. 651-666). New York, NY: Springer New York.

    Treffer, R. and Deckert, V. (2010). Recent advances in single-molecule sequencing. Current opinion in biotechnology21(1), 4-11.

    Unamba, C. I., Nag, A., and Sharma, R. K. (2015). Next generation sequencing technologies: the doorway to the unexplored genomics of non-model plants. Front. plant sci.6, 1074. doi: 10.3389/fpls.2015.01074

    Voelkerding, K. V., Dames, S. A., and Durtschi, J. D. (2009). Next-generation sequencing: from basic research to diagnostics. Clinical chemistry55(4), 641-658.

    Wang, M. (2021). Next-Generation Sequencing (NGS). In: Pan, S., Tang, J. (eds) Clinical Molecular Diagnostics. Springer, Singapore. https://doi.org/10.1007/978-981-16-1037-0_23

    Wang, M., Huang, J., Liu, S., Liu, X., Li, R., Luo, J., and Fu, Z. (2022). Improved assembly and annotation of the sesame genome. DNA Research29(6), dsac041.

    Wei, Q., Wang, J., Wang, W., Hu, T., Hu, H., and Bao, C. (2020). A high-quality chromosome-level genome assembly reveals genetics for important traits in eggplant. Horticulture research7.

    Xiao, M., Zhang, Y., Chen, X., Lee, E.J., Barber, C.J., Chakrabarty, R., Desgagné-Penix, I., Haslam, T.M., Kim, Y.B., Liu, E., and MacNevin, G. (2013). Transcriptome analysis based on next-generation sequencing of nonmodel plants producing specialized metabolites of biotechnological interest. J. Biotechnol. 166, 122–134. doi: 10.1016/j.jbiotec.2013.04.004

    Xin, H., Ji, F., Wu, J., Zhang, S., Yi, C., Zhao, S., Cong, R., Zhao, L., Zhang, H. and Zhang, Z. (2023). Chromosome-scale genome assembly of marigold (Tagetes erecta L.): An ornamental plant and feedstock for industrial lutein production. Horticultural Plant Journal9(6), 1119-1130.

    Yadav, P., Vaidya, E., Rani, R., Yadav, N. K., Singh, B. K., Rai, P. K., and Singh, D. (2016). Recent perspective of next generation sequencing: applications in molecular plant biology and crop improvement. Proc. Natl. Acad. Sci., India Section B: Biological Sciences88, 435-449.

    Zhu, T., Wang, L., Rimbert, H., Rodriguez, J.C., Deal, K.R., De Oliveira, R., Choulet, F., Keeble‐Gagnère, G., Tibbits, J., Rogers, J. and Eversole, K. (2021). Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. The Plant Journal107(1), 303-314.