Organisms categorised as polyploids are those that possess more chromosomal sets than diploid organisms and are categorised as either euploid or aneuploid. In addition to happening naturally, antimitotic agents can also be used for artificial polyploidization. Natural hybridization between species with varying ploidy levels can result in the formation of polyploids. Flow cytometry analysis is the most widely utilised technique for identification of polyploidy. One important mechanism for adaptation and speciation is polyploidy. Artificial polyploidization has increasingly become a prominent strategy in plant mutation breeding as it involves mutation of genome which results in greater phenotypic variation. In this chapter, techniques of polyploidization and effect of polyploidization in different crops will be discussed.
Polyploidy, Autopolyploidy, Allopolyploidy, Flow cytometry, colchicine
Acquaah, G. (2009). Principles of plant genetics and breeding. John Wiley & Sons.
Ade, R., & Rai, M. K. (2010). Colchicine, current advances and future prospects. Nusantara Bioscience, 2(2).
Alkadi, H., Khubeiz, M. J., & Jbeily, R. (2018). Colchicine: a review on chemical structure and clinical usage. Infectious Disorders-Drug Targets (Formerly Current Drug Targets-Infectious Disorders), 18(2), 105-121.
Allafe, M. A., & Adam, A. R. (2022). Influence of Colchicine Concentrations on Wheat Seeds Germination and Seedling Quality.
Bohanec, B. (2003). Ploidy determination using flow cytometry. In Doubled haploid production in crop plants: a manual (pp. 397-403). Dordrecht: Springer Netherlands.
Bourke, P. M. (2018). Genetic mapping in polyploids (Doctoral dissertation, Wageningen University and Research).
Bukhari, R., & Kour, H. (2019). Polyploidy in agriculture: With special reference to mulberry. Journal of Pharmacognosy and Phytochemistry, 8(3), 1795-1808.
Challinor, A. J., Simelton, E. S., Fraser, E. D., Hemming, D., & Collins, M. (2010). Increased crop failure due to climate change: assessing adaptation options using models and socio-economic data for wheat in China. Environmental Research Letters, 5(3), 034012.
Changquan, W., Yazhi, L., Decai, C., & Huairui, S. (1997). Study on the doubling effect of colchicine on leaves in vitro of apple seedlings. HenongXuebao (Acta AgriculturaeNucleataeSinica), 11.
Chen, C., Hou, X., Zhang, H., Wang, G., & Tian, L. (2011). Induction of Anthurium andraeanum “Arizona” tetraploid by colchicine in vitro. Euphytica, 181, 137-145.
Chen, L., Lou, Q., Zhuang, Y., Chen, J., Zhang, X., & Wolukau, J. N. (2007). Cytological diploidization and rapid genome changes of the newly synthesized allotetraploids Cucumis× hytivus. Planta, 225, 603-614.
Comai, L. (2005). The advantages and disadvantages of being polyploid. Nature reviews genetics, 6(11), 836-846.
Corneillie, S., De Storme, N., Van Acker, R., Fangel, J. U., De Bruyne, M., De Rycke, R., ... & Boerjan, W. (2019). Polyploidy affects plant growth and alters cell wall composition. Plant physiology, 179(1), 74-87.
Dhooghe, E., Van Laere, K., Eeckhaut, T., Leus, L., & Van Huylenbroeck, J. (2011). Mitotic chromosome doubling of plant tissues in vitro. Plant Cell, Tissue and Organ Culture (PCTOC), 104, 359-373.
Dolezel, J., Greilhuber, J., & Suda, J. (Eds.). (2007). Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. John Wiley & Sons.
Dudits, D., Török, K., Cseri, A., Paul, K., Nagy, A. V., Nagy, B., ... & Ayaydin, F. (2016). Response of organ structure and physiology to autotetraploidization in early development of energy willow Salix viminalis. Plant Physiology, 170(3), 1504-1523.
Eng, W. H., & Ho, W. S. (2019). Polyploidization using colchicine in horticultural plants: A review. Scientia horticulturae, 246, 604-617.
Eng, W. H., Ho, W. S., & Ling, K. H. (2021). Effects of colchicine treatment on morphological variations of Neolamarckiacadamba.
Essel, E., Asante, I. K., & Laing, E. (2015). Effect of colchicine treatment on seed germination, plant growth and yield traits of cowpea (Vigna unguiculata (L.) Walp). Canadian Journal of Pure and Applied Sciences, 9(3), 3573-3576.
Fathurrahman, F., Ulpah, S., Sodiq, N. A. M., & Mahadi, I. (2024). The effect of colchicine treatment on phenotype and genotype characteristics of Detam-2 variety of soybean Glycine max. Biodiversitas Journal of Biological Diversity, 25(3).
Firbas, P., & Amon, T. (2014). Chromosome damage studies in the onion plant Allium cepa L. Caryologia, 67(1), 25-35.
Flagel, L. E., & Wendel, J. F. (2010). Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytologist, 186(1), 184-193.
Huy, N. P., Luan, V. Q., Tung, H. T., Hien, V. T., Ngan, H. T. M., Duy, P. N., & Nhut, D. T. (2019). In vitro polyploid induction of Paphiopedilum villosum using colchicine. Scientia horticulturae, 252, 283-290.
Imery, J., & Cequea, H. (2001). Colchicine-induced Autotetraploid in Aloe vera L. Cytologia, 66(4), 409-413.
Inoué, S. (2008). The effect of colchicine on the microscopic and submicroscopic structure of the mitotic spindle. In Collected Works of Shinya InouÉ: Microscopes, Living Cells, and Dynamic Molecules (With DVD-ROM) (pp. 89-102).
Jain, S. M. (2010). Mutagenesis in crop improvement under the climate change. Romanian biotechnological letters, 15(2), 88-106.
Kumar, N. (2006). Breeding of horticultural crops: principles and practices. New India Publishing.
Kumar, P. 2021. Biophysics and Molecular Biology Tools and Techniques. Path finder publication, New Delhi, India. 257 p.
Long, P. P., Zhang, Z. S., & Hanh, N. T. T. morphological variation and polysaccharides biosynthesis gene expression in colchicine-induced autopolyploid and allopolyploid in dendrobium.
Lu, Y., Chen, J., Xiao, M., Li, W., & Miller, D. D. (2012). An overview of tubulin inhibitors that interact with the colchicine binding site. Pharmaceutical research, 29, 2943-2971.
Madani, H., Escrich, A., Hosseini, B., Sanchez-Muñoz, R., Khojasteh, A., & Palazon, J. (2021). Effect of polyploidy induction on natural metabolite production in medicinal plants. Biomolecules, 11(6), 899.
Madlung, A. (2013). Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity, 110(2), 99-104.
Maneerattanarungroj, P., Weruwanaruk, C., & Maneerattanarungroj, P. (2016). Effect of colchicine on some morphological and anatomical characteristics of Homnil rice seedling (Oryza sativa L.), Landrace rice of Thailand. Koch Cha Sarn Journal of Science, 38(2), 72-78.
Manzoor, A., Ahmad, T., Bashir, M. A., Baig, M. M. Q., Quresh, A. A., Shah, M. K. N., & Hafiz, I. A. (2018). Induction and identification of colchicine induced polyploidy in ‘White Prosperity’. Folia Horticulturae, 30(2), 307-319.
Morejohn, L. C., & Fosket, D. E. (1984). Taxol-induced rose microtubule polymerization in vitro and its inhibition by colchicine. The Journal of cell biology, 99(1), 141-147.
Nelson, L. S., Shih, R. D., Balick, M. J., & Lampe, K. F. (2007). Handbook of poisonous and injurious plants. New York: New York Botanical Garden.
Nura, S., Adamu, A. K., Mu’Azu, S., & Dangora, D. B. (2011). Effect of colchicine induced mutagenesis on growth and yield of sesame (Sesamum indicum L.). Bayero Journal of Pure and Applied Sciences, 4(1), 121-125.
Ramsey, J., & Schemske, D. W. (1998). Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual review of ecology and systematics, 29(1), 467-501.
Ranney, T. G. (2006). Polyploidy: From evolution to new plant development. In Combined proceedings international plant propagators’ society (Vol. 56, pp. 137-142).
Rathod, A. D., Patil, S. R., Taksande, P. N., Karad, G. W., Kalamkar, V. B., & Jayade, V. S. (2018). Effect of colchicine on morphological and biometrical traits in African marigold.
Regalado, J. J., Carmona-Martín, E., Querol, V., Veléz, C. G., Encina, C. L., & Pitta-Alvarez, S. I. (2017). Production of compact petunias through polyploidization. Plant Cell, Tissue and Organ Culture (PCTOC), 129, 61-71.
Ren, J. I. A. N., Wu, X., Song, C., Liang, Y., Gao, W., & Wang, Y. (2018). Induction of polyploid tillered onion using colchicine and pendimethalin. Sains Malaysiana, 47(11), 2617-2624.
Rosenzweig, C., Iglesius, A., Yang, X. B., Epstein, P. R., & Chivian, E. (2001). Climate change and extreme weather events-Implications for food production, plant diseases, and pests.
Salma, U., Kundu, S., & Mandal, N. (2017). Artificial polyploidy in medicinal plants: advancement in the last two decades and impending prospects. Journal of crop science and biotechnology, 20, 9-19.
Sattler, M. C., Carvalho, C. R., & Clarindo, W. R. (2016). The polyploidy and its key role in plant breeding. Planta, 243, 281-296.
Singh, B.D. 2018. Plant breeding principles and methods. Kalyani Publishers, Delhi, India, 907 p.
Soltis, P. S., Marchant, D. B., Van de Peer, Y., & Soltis, D. E. (2015). Polyploidy and genome evolution in plants. Current opinion in genetics & development, 35, 119-125.
Taratima, W., Reanprayoon, P., & Raso, S. (2020). Physiological and anatomical changes in thai rice landrance (Oryza sativa L.) CV pakaumpuel after colchicine treatment. Pak. J. Bot, 52(5), 1631-1638.
Termkietpisan, W. (2013). Effects of different colchicine concentrations on latex amount and changes in certain stomata characteristics of Hevea brasiliensis Muell. Arg. seedlings in vivo. Agriculture and Natural Resources, 47(3), 311-322.
Udofia, E. G., Falusi, O. A., Abubakar, A., Daudu, O. A. Y., Ajenifujah-Solebo, S. O. A., & Titus, S. D. (2022). Mutagenic effects of colchicine on the morphology and yield of three tomato (Solanum lycopersicum L.) accessions. Journal of Agriculture and Food Sciences, 20(2), 119-132.
Van de Peer, Y., Ashman, T. L., Soltis, P. S., & Soltis, D. E. (2021). Polyploidy: an evolutionary and ecological force in stressful times. The Plant Cell, 33(1), 11-26.
Van de Peer, Y., Mizrachi, E., & Marchal, K. (2017). The evolutionary significance of polyploidy. Nature Reviews Genetics, 18(7), 411-424.
Vimala, Y., Lavania, S., & Lavania, U. C. (2021). Chromosome change and karyotype differentiation–implications in speciation and plant systematics. The Nucleus, 64, 33-54.
Wei-Seng, H. O., Wee-Hiang, E. N. G., & Kwong-Hung, L. I. N. G. (2021). Cytogenetic, chromosome count optimization and automation of Neolamarckiacadamba (Rubiaceae) root tips derived from in vitro mutagenesis. Notulae Scientia Biologicae, 13(3), 10995-10995.
Winarto, B., Mattjik, N. A., da Silva, J. A. T., Purwito, A., & Marwoto, B. (2010). Ploidy screening of anthurium (Anthurium andreanum Linden ex André) regenerants derived from anther culture. Scientia Horticulturae, 127(1), 86-90.
Xie, X., Agüero, C. B., Wang, Y., & Walker, M. A. (2015). In vitro induction of tetraploids in Vitis× Muscadinia hybrids. Plant Cell, Tissue and Organ Culture (PCTOC), 122, 675-683.
Zhang, K., Wang, X., & Cheng, F. (2019). Plant polyploidy: origin, evolution, and its influence on crop domestication. Horticultural Plant Journal, 5(6), 231-239.
Zhang, Y., Zhang, S., Ren, J., Hou, X., Xiong, A., Li, Y., ... & Xu, L. (2014). Induction of tetraploidy in non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino) by colchicine treatment increases the ascorbic acid concentration. The Journal of Horticultural Science and Biotechnology, 89(1), 53-60.
Zhou, H. W., Zeng, W. D., & Yan, H. B. (2017). In vitro induction of tetraploids in cassava variety ‘Xinxuan 048’using colchicine. Plant Cell, Tissue and Organ Culture (PCTOC), 128, 723-729.