Role of Agronomy in Cultivating a Sustainable Food Future | Doi : 10.37446/edibook092024/116-122

PAID ACCESS | Published on : 31-Oct-2024

Precision Agriculture: Harnessing Technology for Sustainable and Efficient Farming

  • S.R. Shri Rangasami
  • Associate Professor (Agronomy), Department of Forage Crops, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
  • K. Sathiya
  • Associate Professor (Agronomy), Oil seed Research Station, Tindivanam, Tamil Nadu, India.
  • R. Ajaykumar
  • Assistant Professor (Agronomy), Vanavarayar Institute of Agriculture, Pollachi, Tamil Nadu, India.
  • M. Purnima
  • Research Scholar, Department of Agronomy, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.

Abstract

Precision farming, also known as precision agriculture, represents a transformative approach to farming that leverages advanced technologies to optimize crop production. By utilizing tools such as GPS mapping, remote sensing, and data analytics, precision farming allows for the meticulous management of agricultural inputs like water, fertilizers and pesticides. This targeted approach reduces waste, minimizes environmental impact, and enhances crop yields. Recent advancements in AI and machine learning have further revolutionized precision farming, enabling real-time monitoring and predictive analytics to support decision-making processes. As global food demand continues to rise, precision farming offers a sustainable solution to increase agricultural efficiency, reduce costs, and ensure food security. This paper explores the key technologies driving precision farming, their applications, and the potential challenges and opportunities they present for the future of agriculture.

Keywords

Geographic information systems, Global positioning system, Variable rate technology, Remote sensing, Yield mapping

References

  • Adewusi, A. O., Asuzu, O. F., Olorunsogo, T., Iwuanyanwu, C., Adaga, E., & Daraojimba, D. O. (2024). AI in precision agriculture: A review of technologies for sustainable farming practices. World Journal of Advanced Research and Reviews, 21(1), 2276-2285.

    Al Ahmad, A. J. (2023). Harnessing Precision Agriculture Technologies for Eco-Friendly Crop Management: A Synthesis of Environmental Biology and Agriculture Perspectives. Journal Siplieria Sciences, 4(1), 1-10.

    Bongiovanni, R., & Lowenberg-DeBoer, J. (2004). Precision agriculture and sustainability. Precision agriculture, 5, 359-387.

    Demirbaş, N. (2018). Precision agriculture in terms of food security: Needs for the future. Precision Agriculture27(28).

    Khan, N. M., & Munawar, B. (2023). Harnessing the power of precision agriculture: a paradigm shift in agronomy. International Journal of Research and Advances in Agricultural Sciences, 2(3), 79-87.

    Robert, Pierre C. (2020). Precision Agriculture: Revolutionizing Agricultural Practices. Journal of Precision Agriculture, 12 (3), 45-59.

    Shafi, U., Mumtaz, R., García-Nieto, J., Hassan, S. A., Zaidi, S. A. R., & Iqbal, N. (2019). Precision agriculture techniques and practices: From considerations to applications. Sensors, 19(17), 3796.

    Triantafyllou, A., Sarigiannidis, P., & Bibi, S. (2019). Precision agriculture: A remote sensing monitoring system architecture. Information, 10(11), 348.

    Yost, M. A., Kitchen, N. R., Sudduth, K. A., Sadler, E. J., Drummond, S. T., & Volkmann, M. R. (2017). Long-term impact of a precision agriculture system on grain crop production. Precision agriculture, 18, 823-842.

    Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: a review. Precision agriculture, 13, 693-712.