Advances in Plant Biotechnology (Volume 1) | Doi : 10.37446/volbook032024/159-187

PAID ACCESS | Published on : 06-Dec-2024

Prospectives of Metabolic Engineering for Sustainable Bioenergy Production

  • Yogendra Singh
  • Department of Genetics & Plant Breeding, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, M.P., India.
  • Gaurav Singh Rathore
  • Department of Genetics & Plant Breeding, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, M.P., India.
  • Pavan Chouksey
  • Department of Genetics & Plant Breeding, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, M.P., India.
  • Prashant Gigaulia
  • Department of Genetics & Plant Breeding, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, M.P., India.
  • M.K. Tripathi
  • Zonal Agricultural Research Station, Morena, Rajmata vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior M.P., India.

Abstract

An urgent necessity for supportable and renewable energy sources has driven substantial attention in biofuels as substitutes to relic fuels among various approaches metabolic engineering offers a powerful tool for designing and optimizing microbial and plant-based systems to produce biofuels efficiently from renewable feedstocks. This field leverages synthetic biology, systems biology and computational approaches to redirect cellular metabolism toward the creation of biofuels for instance ethanol, butanol, bio-diesel and progressive biofuels like isobutanol. Engineering organisms to utilize diverse substrates including lignocellulosic biomass, organic waste and even CO₂ researchers aim to create biofuel production systems that are both economically and environmentally sustainable. Recent advancements in metabolic engineering have expanded the genetic and biochemical tool kit available for modifying biosynthetic pathways enabling precise manipulation of metabolic fluxes to maximize biofuel yield. This often involves the introduction of heterologous pathways, overexpression of rate- restraining enzymes, elimination of competing pathways and the optimization of regulatory elements to enhance product specificity. Another critical aspect of metabolic engineering for biofuels is the focus on robustness and tolerance. Engineered organisms must withstand industrial conditions including high temperatures, varying pH and the presence of toxic by-products. Adaptive laboratory evolution (ALE) and high-throughput screening techniques are progressively employed to develop microbial strains with enhanced tolerance to these stresses thereby ensuring consistent biofuel production at a commercial scale. Furthermore, synthetic biology enables the design of microbial consortia where diverse species work synergistically to optimize substrate utilization and biofuel production. The environmental benefits of metabolically engineered biofuel systems are substantial as they provide a renewable alternative to petroleum-based fuels, plummeting greenhouse gas emissions and dependence on determinate fossil capitals. These systems can also utilize waste materials as feedstocks, contributively to waste lessening and rotary economy ethics. However, challenges remain, including the economic viability of large-scale biofuel production and the optimization of yields to meet market demands. Future research in this area is focused on educating metabolic efficiency, expanding substrate flexibility, and enhancing biofuel recovery processes. Integrating omics data with machine learning and computational modelling may offer new insights into optimizing these processes further.

Keywords

Biodiesel, Butanol, Ethanol, Isobutanol, Metabolic engineering

References

  • Agrawal, M., Dunn, K. L., & Rao, C. V. (2017). Zymomonas mobilis for the conversion of lignocellulosic biomass to fuels and chemicals. Engineering of microorganisms for the production of chemicals and biofuels from renewable resources, pp 67-92.

    Ahuja, A., Kitchlu, S. K., Bakshi, S. K., Tripathi, M.K. & Tiwari, G. (2016a). Volatile terpenoid spectrum of essential oil of micropropagated and naturally grown plants in cotton lavender (Santolina chamaecyparissus L.). International Journal of Agriculture Sciences, 8(53), 2718-2720.

    Ahuja, A., Tripathi, M.K. & Singh, S.P. (2016b). Plant cell cultures – an efficient resource for the production of biologically important metabolites: recent developments-a review. Progressive Research, 11(1), 1-8.

    Ahuja, A., Sharma, M., Mallubhotla, S., Tripathi, M. K. & Singh, S. P. (2017). Application of bioreactor system for high throughput propagation of plants of medicinal importance-some case studies. Frontiers in Crop Improvement, 5 (1), 7-11.

    Ahuja, A., Tripathi, M.K., Tiwari, S., Tripathi, N., Tiwari, G., Mishra, N., Bhargav, S. & Tiwari, S. (2021). Recent advancements on callus and cell suspension cultures: An effectual reserve for the production of pharmaceutically significant metabolites. In Current Aspects in Pharmaceutical Research and Development Vol. 6 (pp. 96–111). Book Publisher International (a part of SCIENCEDOMAIN International).

    Akponah, E., Akpomie, O. O., & Ubogu, M. (2013). Bio-ethanol production from cassava effluent using Zymomonas mobilis and Saccharomyces cerevisiae isolated from rafia palm (Elaesis guineesi) SAP. European Journal of Experimental Biology, 3(4), 247-253.

    Alper, H., & Stephanopoulos, G. (2007). Global transcription machinery engineering: a new approach for improving cellular phenotype. Metabolic Engineering, 9(3), 258-267.

    Alper, H., Moxley, J., Nevoigt, E., Fink, G. R., & Stephanopoulos, G. (2006). Engineering yeast       transcription       machinery       for       improved       ethanol       tolerance       and production. Science, 314(5805), 1565-1568.

    Atsumi, S., Cann, A. F., Connor, M. R., Shen, C. R., Smith, K. M., Brynildsen, M. P., & Liao, J. C. (2008). Metabolic engineering of Escherichia coli for 1-butanol production. Metabolic Engineering, 10(6), 305-311.

     Atsumi, S., Hanai, T., & Liao, J. C. (2008). Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, 451(7174), 86-89.

    Balat, M., & Balat, H. (2008). A critical review of bio-diesel as a vehicular fuel. Energy Conversion and Management, 49(10), 2727-2741.

    Balderas-Hernandez, V.  E., Maldonado, K., L., & Sánchez, A.  (2020).  Improvement of hydrogen production by metabolic engineering of Escherichia coli: Modification on both the PTS system and central carbon metabolism.  International Journal of Hydrogen Energy, 45, 5687-5696.

    Banerjee, C., Dubey, K. K., & Shukla, P. (2016). Metabolic engineering of microalgal based biofuel production: prospects and challenges. Frontiers in Microbiology, 7, 432.

    Bastian, S., Liu, X., Meyerowitz, J. T., Snow, C. D., Chen, M. M., & Arnold, F. H. (2011). Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2- methylpropan-1-ol    production    at    theoretical    yield    in    Escherichia    coli. Metabolic Engineering, 13(3), 345-352.

    Bitzer, M.  (2009).  Research report:  Early deheading of sweet sorghum.  National SweetSorghum Producers and Processors Association.  E3S Web of Conferences, 286, 03020.

    Bosl, W. J. (2007). Systems biology by the rules: hybrid intelligent systems for pathway modeling and discovery. BMC Systems Biology, 1, 1-25.

    Bruder, S., Moldenhauer, E. J., Lemke, R. D., Ledesma-Amaro, R., & Kabisch, J. (2019). Drop-in biofuel production using fatty acid photodecarboxylase from Chlorella variabilis in the oleaginous yeast Yarrowia lipolytica. Biotechnology for Biofuels, 12, 1-13.

    Caspeta, L., & Castillo, T.  (2017).  Systems metabolic engineering of Saccharomyces cerevisiae for production of biochemicals from biomass. Engineering of Microorganisms for the Production of Chemicals and Biofuels from Renewable Resources, pp 31-65.

    Chatzivasileiou, A. O., Ward, V., Edgar, S. M., & Stephanopoulos, G. (2019). Two-step pathway for isoprenoid synthesis. Proceedings of the National Academy of Sciences, 116(2), 506-511.

    Chhikara, S., Abdullah, H. M., Akbari, P., Schnell, D., & Dhankher, O. P. (2018). Engineering Camelina sativa (L.) Crantz for enhanced oil and seed yields by combining diacylglycerol  acyltransferase1  and  glycerol‐3‐phosphate  dehydrogenase  expression. Plant Biotechnology Journal, 16(5),1034-1045.

    Chisti,   Y.    (2013).    Constraints    to    commercialization    of    algal    fuels. Journal of Biotechnology, 167(3), 201-214.

    Cho, C., Hong, S., Moon, H. G., Jang, Y. S., Kim, D., & Lee, SY. (2019). Engineering clostridial aldehyde/alcohol dehydrogenase for selective butanol production. Journal of Molecular Biology, 10(1), 10-1128.

    Cho. H., & Cronan, J. E. (1995). Defective export of a periplasmic enzyme disrupts regulation of fatty acid synthesis. Journal of Biological Chemistry, 270(9), 4216-4219.

    Choi, K. R., Jang, W. D., Yang, D., Cho, J. S., Park, D., & Lee, S. Y. (2019). Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends in Biotechnology, 37(8), 817-837.

    Clomburg, J. M., Qian, S., Tan, Z., Cheong, S., & Gonzalez, R. (2019). The isoprenoid alcohol pathway, a synthetic route for isoprenoid biosynthesis. Proceedings of the National Academy of Sciences, 116(26), 12810-12815.

    Derkx, P. M., Janzen, T., Sørensen, K. I., Christensen, J. E., Stuer-Lauridsen, B., & Johansen, E. (2014). The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology. Microbial Cell Factories, 13, 1-13.

    Du, C., Li, Y., Zhao, X., Pei, X., Yuan, W., Bai, F., & Jiang, Y. (2019). The production of ethanol from lignocellulosic biomass by Kluyveromyces marxianus CICC 1727-5 and Spathaspora pissaladières ATCC MYA-4345. Applied Microbiology & Biotechnology, 103, 2845-2855.

    Ebadian, M., van Dyk, S., McMillan, J. D., & Saddler, J. (2020). Biofuels policies that have encouraged their production and use: An international perspective. Energy Policy147, 111906.

    Fargione, J., Hill, J., Tilman, D., Polasky, S., & Hawthorne, P. (2008). Land clearing and the biofuel carbon debt. Science319(5867), 1235-1238.

    Farjad, M. (2023). Sustainable farming, biofuels, and role of precision agriculture: A GeoPard perspective, https://geopard.tech/blog/sustainable-farming-biofuels-and-role-of-precision- agriculture/ Farm-energy. (2024). Feedstocks for Biofuel Production – Farm Energy. extension.org, https://farm-energy.extension.org/feedstocks-for-biofuel-production/

    Galazka, J. M., Tian, C., Beeson, W. T., Martinez, B., Glass, N. L., & Cate, J. H. (2010). Cellodextrin transport in yeast for improved biofuel production. Science330(6000), 84-86.

    Gleizer, S., Ben-Nissan, R., Bar-On, Y. M., Antonovsky, N., Noor, E., Zohar, Y., ... & Milo, R. (2019). Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell179(6), 1255-1263.

    Gordon, V. S., Comstock, J. C., Sandhu, H. S., Gilbert, R. A., Sood, S., Korndorfer, P., Arundale, R.  (2016).  Registration of ‘UFCP  84‐1047’Sugarcane for use as a biofuel feedstock. Journal of Plant Registrations, 10(3),251-257.

    Gustavsson, M., & Lee, S. Y. (2016). Prospects of microbial cell factories developed through systems metabolic engineering. Microbial Biotechnology, 9(5), 610-617.

    Ha, S. J., Galazka, J. M., Rin Kim, S., Choi, J. H., Yang, X., Seo, J. H., ... & Jin, Y. S. (2011). Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proceedings of the National Academy of Sciences108(2), 504-509.

    Hajjari, M., Tabatabaei, M., Aghbashlo, M., & Ghanavati, H.  (2017).  A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste- oil biodiesel utilization. Renewable and Sustainable Energy Reviews, 72, 445-464.

    Hollinshead, W., He, L., & Tang, Y.  J.  (2014).  Biofuel production:  an odyssey from metabolic engineering to fermentation scale-up. Frontiers in Microbiology, 5, 344.

    Hubbe, M. A., (2016). Catalysts inspired by life. Biofuel Research Journal, 3(3), 430.

    Huerta‐Beristain, G., Cabrera‐Ruiz, R., Hernandez‐Chavez, G., Bolivar, F., Gosset, G., & Martinez, A. (2017). Metabolic engineering and adaptive evolution of Escherichia coli KO11 for   ethanol   production   through   the   Entner–Doudoroff   and   the   pentose   phosphate pathways. Journal of Chemical Technology & Biotechnology, 92(5), 990-996.

    Huffer, S., Roche, C. M., Blanch, H. W., & Clark, D. S. (2012). Escherichia coli for biofuel production: bridging the gap from promise to practice. Trends in Biotechnology, 30(10), 538-545.

    Inui, M., Suda, M., Kimura, S., Yasuda, K., Suzuki, H., Toda, H., & Yukawa, H. (2008). Expression   of   Clostridium   acetobutylicum   butanol   synthetic   genes   in   Escherichia coli. Applied Microbiology & Biotechnology, 77, 1305-1316.

    Jang, Y. S., Lee, J. Y., Lee, J., Park, J. H., Im, J. A., Eom, M. H., ... & Lee, S. Y. (2012). Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. MBio3(5), 10-1128.

    Jeffries, T.  W.  (2006).  Engineering yeasts for xylose metabolism. Current Opinion in Biotechnology, 17(3), 320-326.

    Jia, D., Xu, S., Sun, J., Zhang, C., Li, D., & Lu, W. (2019). Yarrowia lipolytica construction for    heterologous    synthesis    of    α-santalene    and   fermentation    optimization. Applied Microbiology & Biotechnology, 103, 3511-3520.

     Jin, H., Chen, L., Wang, J., & Zhang, W. (2014). Engineering biofuel tolerance in non-native producing microorganisms. Biotechnology Advances, 32(2), 541-548.

    Joshi, A., Verma, K. K., D Rajput, V., Minkina, T., & Arora, J. (2022). Recent advances in metabolic engineering of microorganisms for advancing lignocellulose-derived biofuels. Bioengineered13(4), 8135-8163.

    Joyce, A. R., & Palsson, B. O. (2006). The model organism as a system: integrating ‘omics' data sets. Nature Reviews Molecular Cell Biology, 7(3),198-210.

    Kalscheuer, R., Stolting, T., & Steinbuchel, A. (2006). Microdiesel: Escherichia coli engineered for fuel production. Microbiology152(9), 2529-2536.

    Khalife, E., Tabatabaei, M., Demirbas, A., & Aghbashlo, M. (2017). Impacts of additives on performance   and   emission   characteristics   of   diesel   engines   during   steady   state operation. Progress in Energy & Combustion Science, 59, 32-78.

    Kim, H. M., Chae, T. U., Choi, S. Y., Kim, W. J., & Lee, S. Y. (2019). Engineering of an oleaginous bacterium for   the   production   of fatty acids and fuels. Nature Chemical Biology, 15(7), 721-729.

    Kim, I. K., Roldão, A., Siewers, V., & Nielsen, J. (2012). A systems-level approach for metabolic engineering of yeast cell factories. FEMS yeast research12(2), 228-248.

    Kim, N. J., Lim, S. J., & Chang, H. N. (2018). Volatile fatty acid platform: concept and application. Emerging Areas in Bioengineering, 1, 173-190.

    Kulkarni, R. (2016). Metabolic engineering: Biological art of producing useful chemicals. Resonance21(3), 233-237.

    Kumaraswamy, K. G., Krishnan, A., Ananyev, G., Zhang, S., Bryant, D. A., & Dismukes, G. C. (2019). Crossing the Thauer limit: rewiring cyanobacterial metabolism to maximize fermentative H 2 production. Energy & Environmental Science12(3), 1035-1045.

    Lee, K., Lee, Y. J., Chang, H. N., & Jeong, K. J. (2019). Engineering Trichosporon oleaginosus   for   enhanced   production   of   lipid   from   volatile   fatty   acids   as   carbon source. Korean Journal of Chemical Engineering, 36, 903-908.

    Lee, S. Y., Kim, H. U., Chae, T. U., Cho, J. S., Kim, J. W., Shin, J. H., & Jang, Y. S. (2019). A   comprehensive   metabolic   map   for   production   of   bio-based   chemicals. Nature Catalysis, 2(1), 18-33.

    Leonard, E., Nielsen, D., Solomon, K., & Prather, K. J. (2008). Engineering microbes with synthetic biology frameworks. Trends in Biotechnology, 26(12), 674-681.

    Li, Y., Han, D., Hu, G., Dauvillee, D., Sommerfeld, M., Ball, S., & Hu, Q. (2010). Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metabolic engineering12(4), 387-391.

    Li, Y., Hu, J., Qu, C., Chen, L., Guo, X., Fu, H., & Wang, J. (2019). Engineered Thermoanaero bacterium aotearoense with nfnAB knockout for improved hydrogen production from lignocellulose hydrolysates. Biotechnology for biofuels12, 1-14.

    Liao, J. C., Mi, L., Pontrelli, S., & Luo, S. (2016). Fuelling the future: microbial engineering for the production of sustainable biofuels. Nature Reviews Microbiology, 14(5), 288-304.

    Liu, D., Yang, Z., Wang, P., Niu, H., Zhuang, W., Chen, Y., & Ouyang, P. (2018). Towards acetone-uncoupled biofuels production in solventogenic Clostridium through reducing power conservation. Metabolic Engineering, 47, 102-112.

    Liu, J., Song, Y., & Qiu, W. (2017). Oleaginous microalgae Nannochloropsis as a new model for biofuel production review and analysis. Renewable and Sustainable Energy Reviews, 72, 154-162.

    Liu, T., Vora, H., & Khosla, C. (2010). Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. Metabolic Engineering, 12(4), 378-386.

    Liu, X., Sheng, J., & Curtiss, R. (2011). Fatty acid production in genetically modified cyanobacteria. Proceedings of the National Academy of Sciences, 108(17), 6899-6904.

    Matsushika, A., Inoue, H., Kodaki, T., & Sawayama, S. (2009). Ethanol production from xylose in engineered Saccharomyces cerevisiae strains current state and perspectives. Applied Microbiology & Biotechnology, 84, 37-53.

    Merkx-Jacques, A., Rasmussen, H., Muise, D. M., Benjamin, J. J., Kottwitz, H., Tanner, K., &   Woodhall, D.    L.    (2018).    Engineering    xylose    metabolism   in    thraustochytrid T18. Biotechnology for Biofuels, 11, 1-18.

    Miller, R., Wu, G., Deshpande, R. R., Vieler, A., Gärtner, K., Li, X., & Benning, C. (2010). Changes   in   transcript   abundance   in   Chlamydomonas   reinhardtii   following   nitrogen deprivation predict diversion of metabolism. Plant physiology, 154(4), 1737-1752.

    Morimoto, K., Kimura, T., Sakka, K., & Omiya, K.  (2005).  Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production. FEMS Microbiology Letters, 246(2), 229-234.

    Msanne, J., Xu, D., Konda, A. R., Casas-Mollano, J. A., Awada, T., Cahoon, E. B., & Cerutti, H. (2012). Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry75, 50-59.

    Park, J. H., & Lee, S. Y. (2008). Towards systems metabolic engineering of microorganisms for amino acid production. Current Opinion in Biotechnology, 19(5), 454-460.

    Perlack, R. D., Wright, L. L., Turhollow, A. F., Graham, R. L., Stokes, B. J., & Erbach, D. C. (2005). Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply. https://www1.eere.energy.gov/bioenergy/pdfs/final_billionton_vision_report2.pdf

    Radakovits, R., Jinkerson, R. E., Darzins, A., & Posewitz, M. C. (2010). Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell, 9(4), 486-501.

    Romero, S., Merino, E., Bolívar, F., Gosset, G., & Martinez, A.  (2007).  Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism. Applied & Environmental Microbiology, 73(16), 5190-5198.

    Sallustio, L., Harfouche, A. L., Salvati, L., Marchetti, M., & Corona, P. (2022). Evaluating the potential of marginal lands available for sustainable cellulosic biofuel production in Italy. Socio-Economic Planning Sciences, 82, 101309.

    Sandhu, H. S., Gilbert, R. A., Comstock, J., Gordon, V. S., Korndorfer, P., El-Hout, N., & Arundale, R.    (2016).    "Registration    of    'UFCP    82-1655’ sugarcane." Journal of Plant Registrations, 10, 22–27.

    Scafidi, A., & Haley, B. L. (2024). Increased biofuel production in the US Midwest May Harm Farmers and the Climate. World Resources Institute, https://www.wri.org/insights/increased-biofuel-production-impacts-climate-change-farmers.

    Scully, S. M., & Orlygsson, J. (2014). Recent advances in second generation ethanol production by thermophilic bacteria. Energies, 8(1), 1-30.

    Semkiv, M., Kata, I., Ternavska, O., Sibirny, W., Dmytruk, K., & Sibirny, A. (2019). Overexpression of the genes of glycerol catabolism and glycerol facilitator improves glycerol conversion     to     ethanol     in     the     methylotrophic     thermotolerant     yeast     Ogataea polymorpha. Yeast, 36(5), 329-339.

    Shen, C. R., Lan, E. I., Dekishima, Y., Baez, A., Cho, K. M., Liao, J. C. (2011). Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Applied & Environmental Microbiology, 77(9), 2905-2915.

    Song, X., Li, Y., Wu, Y., Cai, M., Liu, Q., Gao, K., & Qiao, M.  (2018).  Metabolic engineering strategies for improvement of ethanol production in cellulolytic Saccharomyces cerevisiae. FEMS Yeast Research, 18(8), 90.

    Soo, C. S., Yap, W. S., Hon, W. M., Ramli, N., Shah, U. K. M., & Phang, L. Y. (2017). Improvement of hydrogen yield of ethanol-producing Escherichia coli recombinants in acidic conditions. Electronic Journal of Biotechnology, 26, 27-32.

    Steen, E. J., Kang, Y., Bokinsky, G., Hu, Z., Schirmer, A., McClure, A., & Keasling, J. D. (2010).   Microbial   production   of   fatty-acid-derived   fuels   and   chemicals   from   plant biomass. Nature, 463(7280), 559-562.

    Stephanopoulos, G.   (1999).   Metabolic   fluxes   and   metabolic   engineering. Metabolic Engineering, 1(1), 1-11.

    Tuli, D., Kasture, S., & Kuila, A. (2024). Advanced biofuel technologies: Present status, challenges and future prospects (First Edition). Elsevier, ISBN9780323884273. http://www.sciencedirect.com:5070/book/9780323884273

    Tabatabaei, M., Tohidfar, M., Jouzani, G. S., Safarnejad, M., & Pazouki, M. (2011). Biodiesel production from genetically engineered microalgae: future of bioenergy in Iran. Renewable and Sustainable Energy Reviews, 15(4), 1918-1927.

    Talebi, A. F., Dastgheib, S. M. M., Tirandaz, H., Ghafari, A., Alaie, E., & Tabatabaei, M. (2016).   Enhanced   algal-based   treatment of petroleum produced water and   biodiesel production. RSC Adv, 6,47001–9.

    Tao, H., Guo, D., Zhang, Y., Deng, Z., & Liu, T. (2015). Metabolic engineering of microbes for branched-chain biodiesel production with low-temperature property. Biotechnology for Biofuels, 8, 1-11.

    Tripathi, M. K., Mishra, N., Tiwari, S., Shyam, C., Singh, S. & Ahuja, A. (2019). Plant tissue culture technology: sustainable option for mining high value pharmaceutical compounds. International Journal of Current Microbiology and Applied Sciences, 8(02), 1002–1010. https://doi.org/10.20546/ijcmas.2019.802.116

    Tian, L., Conway, P. M., Cervenka, N. D., Cui, J., Maloney, M., Olson, D. G., & Lynd, L. R. (2019). Metabolic engineering of Clostridium thermocellum for n-butanol production from cellulose. Biotechnology for Biofuels, 12, 1-13.

    Tyo, K. E., Alper, H. S., & Stephanopoulos, G. N. (2007). Expanding the metabolic engineering toolbox: more options to engineer cells. Trends in Biotechnology, 25(3), 132-137.

     Uikey, D.  S., Tiwari, G., Tripathi, M.  K.  & Patel, R.  P.  (2014).  Secondary metabolite production of reserpine and ajmalicine in Rauwolfia serpentina (L.) Benth. through callus and cell suspension culture. International Journal of Indigenous Medicinal Plants, 47(2),1633-1646.

    U.S.  Environmental Protection Agency (EPA). (2024). Economics of biofuels. US EPA, https://www.epa.gov/environmental-economics/economics-biofuels.

    Wang, H., Cao, S., Wang, W. T., Wang. K. T., & Jia, X. (2016). Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin. Journal of Industrial Microbiology& Biotechnology, 43(6), 861-871.

    Wen, Z., Ledesma-Amaro, R., Lin, J., Jiang, Y., & Yang, S. (2019). Improved n-butanol production from Clostridium cellulovorans by integrated metabolic and evolutionary engineering. Applied & Environmental Microbiology, 85(7), e02560-18.

    Westbrook, A.W., Miscevic, D., Kilpatrick, S., Bruder, M. R., Moo-Young, M., & Chou, C. P. (2019). Strain engineering for microbial production of value-added chemicals and fuels from glycerol. Biotechnology Advances, 37(4), 538-568.

    Wiegand, K., Winkler, M., Rumpel, S., Kannchen, D., Rexroth, S., Hase, T., & Rögner, M. (2018).  Rational redesign of the ferredoxin-NADP+-oxido-reductase/ferredoxin-interaction for   photosynthesis-dependent   H2-production. Biochimica   et   Biophysica   Acta (BBA)- Bioenergetics, 1859(4), 253-262.

    Xie, S., Sun, S., Lin, F., Li, M., Pu, Y., Cheng, Y., & Yuan, J. S. (2019). Mechanism‐guided design of highly efficient protein secretion and lipid conversion for biomanufacturing and biorefining. Advanced Science, 6(13), 801-980.

    Yang, S., Fei, Q., Zhang, Y., Contreras, L. M., Utturkar, S. M., Brown, S. D., & Zhang, M. (2016).   Zymomonas   mobilis   as   a   model   system   for   production   of   biofuels   and biochemicals. Microbial Biotechnology, 9(6), 699-717.

    Yang, Y.  T., Bennet, G.  N., & San, K.  Y.  (1998). Genetic and Metabolic Engineering.Electronic Journal of Biotechnology, 1(3), 0717-3458.

    Zamboni, N., Mouncey, N., Hohmann, H. P., & Sauer, U. (2003). Reducing maintenance metabolism by metabolic engineering of respiration improves riboflavin production by Bacillus subtilis. Metabolic Engineering, 5(1), 49-55.

    Zhang, F., Rodriguez, S., & Keasling, J. D. (2011). Metabolic engineering of microbial pathways for advanced biofuels production. Current Opinion in Biotechnology, 22,775–83.

    Zhang, J., Zong, W., Hong, W., Zhang, Z. T., & Wang, Y. (2018). Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production. Metabolic Engineering, 47, 49-59.

    Zhao, E. M., Zhang, Y., Mehl. J., Park, H., Lalwani, M. A., Toettcher, J. E., & Avalos, J. L. (2018).  Optogenetic regulation of engineered cellular metabolism for microbial chemical production. Nature, 555(7698), 683-687.

    Zhou, S., Yomano, L. P., Shanmugam, K. T., & Ingram, L. O. (2005). Fermentation of 10%(w/v) sugar to D (−)-lactate by engineered Escherichia coli B. Biotechnology Letters, 27, 1891-1896.

    Zhou, X. R., Liu, Q., & Singh, S. 2023. Engineering nutritionally improved edible plant oils. Annual Review of Food Science &Technology, 14(1), 247-269.