Mutation, a heritable alteration in genetic material, dramas a crucial part in generating genetic variability indispensable for evolution and crop enhancement. This chapter sightsees the principles, techniques and significance of mutation breeding in agriculture, accenting its importance in addressing worldwide food security challenges. Mutation breeding, involving the thoughtful induction of mutations through physical, chemical or biological mutagens, is a keystone of modern crop improvement programmes. It enables an advancement of superior plant cultivars with amended traits, including higher yield, disease resistance and stress tolerance. The chapter dashes the history of mutation breeding, highlighting landmark discoveries and the evolution of techniques, from early physical mutagens viz., X-rays and gamma rays to advanced molecular tools for instance CRISPR-Cas9. The distinction between spontaneous and induced mutations is expounded, along with the mechanisms and applications of site-directed and insertion mutagenesis. It includes the comparative benefits of chemical, physical and biological mutagens, their respective mechanisms of action and advancements in molecular genetics that have revolutionized mutation breeding. Achievements of mutation breeding are underscored by the successful development of over 2,000 mutant crop varieties worldwide, contributing significantly to agricultural productivity and sustainability. Mutation breeding's role in generating climate-resilient crops, improving nutritional quality and addressing environmental challenges is also explored. As a cost-effective and efficient tool, mutation breeding remains integral to the creation of innovative crop cultivars and the pursuit of international food security. The chapter concludes by emphasizing the future potential of integrating mutation breeding with cutting-edge genomic technologies to address emerging agricultural challenges.
Induced mutagenesis, Mutation breeding, Mutagenic agents, Mutation, Crop improvement
Agrawal, L., & Kumar, M. (2021). Improvement in ornamental, medicinal and aromatic plants through induced mutation. Journal of Applied Biology and Biotechnology, 9(4), 162-169.
Ahmad, S., Wei, X., Sheng, Z., Hu, P., & Tang, S. (2020). CRISPR/Cas9 for development of disease resistance in plants: recent progress, limitations and future prospects. Briefings in Functional Genomics, 19(1), 26-39
Amin. R., Laskar, R. A., Khursheed, S., Raina, A. and Khan. S. 2016. Genetic sensitivity towards mms mutagenesis assessed through in Vitro growth and cytological test in Nigella Sativa L. Life Sciences International Research Journal.3: 2347-8691.
Anne, S. and Lim, J. H., 2020. Mutation breeding using gamma irradiation in the development of ornamental plants: a review. 화훼연구, 28 (3), pp. 102-115.
Auerbach, C., 2013. Mutation research: problems, results and perspectives. Springer.
Barghi, N., Hermisson, J., & Schlötterer, C., 2020. Polygenic adaptation: a unifying framework to understand positive selection. Nature Reviews Genetics, 21 (12), pp. 769-781.
Begna, T. (2021). Application of mutation in crop improvement. International Journal of Research in Agronomy, 4(2), 01-08.
Beyaz, R., & Yildiz, M. (2017). The use of gamma irradiation in plant mutation breeding. In Plant Engineering. In Tech. DOI: https://doi.org/10.5772/intechopen.69974
Bezie, Y., Tilahun, T., Atnaf, M., & Taye, M., 2021. The potential applications of site-directed mutagenesis for crop improvement: A review. Journal of Crop Science and Biotechnology, 24 (3), pp. 229-244.
Bourque, G., Burns, K. H., Gehring, M., Gorbunova, V., Seluanov, A., Hammell, M., Imbeault, M., Izsvák, Z., Levin, H. L., Macfarlan, T. S., Mager, D. L., & Feschotte, C. (2018). Ten things you should know about transposable elements. Genome Biology, 19(1), 199. DOI: https://doi.org/10.1186/s13059-018-1577-z
Brunner, H. (1995). Radiation induced mutations for plant selection. Applied Radiation and Isotopes, 46(6–7), pp. 589–594. DOI: https://doi.org/10.1016/0969-8043(95)00096-8
Cai, Y., Chen, L., Liu, X., Guo, C., Sun, S., Wu, C., Jiang, B., Han, T., & Hou, W. (2018). CRISPR/ Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnology Journal, 16(1), pp. 176–185. DOI: https://doi.org/10.1111/PBI.12758/FULL
Chandler, M., & Siguier, P. (2013). Insertion Sequences. (Second E. Hughes (eds.); pp. 86–94). Academic Press. DOI: https://doi.org/https://doi.org/10.1016/B978-0-12-374984-0.00799-3
Elbarbary, R. A., Lucas, B. A., & Maquat, L. E. (2016). Retrotransposons as regulators of gene expression. Science, 351(6274), aac7247. DOI: https://doi.org/10.1126/science.aac7247
FAO/IAEA Mutant Variety Database (2014) http://mvgs. iaea.org
Goyal, S., & Khan, S. (2009). A comparative study of chromosomal aberrations in Vigna mungo induced by ethylmethane sulphonate and hydrazine hydrate. Thai J Agric Sci, 42(3), 177-182.
Griffiths, A. J., Miller, J. H., Suzuki, D. T., Lewontin, R. C., & Gelbart, W. M. (2000). Bacterial insertion sequences. In An Introduction to Genetic Analysis (7th edition). W. H. Freeman. https://www.ncbi.nlm.nih.gov/books/NBK21779/
International Atomic Energy Agency (2021) Mutation induction in plants | IAEA. Available at: https://www.iaea.org/topics/mutation-induction. 28.07.2021
Jain SM. Mutagenesis in crop improvement under the climate change. Romanian biotechnological letters 2010; 15(2):88-106.
Jain, S. M. (2005). Major mutation-assisted plant breeding programs supported by FAO/IAEA. Plant Cell, Tissue and Organ Culture, 82(1), pp. 113–123. DOI: https://doi.org/10.1007/ s11240-004-7095-6
Kharkwal, M. C. (2012). A brief history of plant mutagenesis. In Plant Mutation Breeding and Biotechnology (pp. 21–30). CABI Publishing. DOI: https://doi. org/10.1079/9781780640853.0021
Kharkwal, M. C., Pandey, R. N., & Pawar, S. E. (2004). Mutation breeding for crop improvement. Plant breeding: Mendelian to molecular approaches, 601-645. DOI: https://doi.org/10.1007/978-94-007-1040-5_26
Khursheed, S., Raina, A., & Khan, S. 2016. Improvement of yield and mineral content in two cultivars of Vicia faba L. through physical and chemical mutagenesis and their character association analysis. Arch. Curr. Res. Int. 4(1): 1-7.
Koornneef, M., & Meinke, D., 2010. The development of Arabidopsis as a model plant. The Plant Journal, 61 (6), pp. 909-921.
Krishnan, P., & Damaraju, S. (2019). Chapter 13 - piRNAs in the pathophysiology of disease and potential clinical applications (B. B. T.-A.-D. N.-C. Rna. Mallick (ed.); pp. 335–356). Academic Press. DOI: https://doi.org/https://doi.org/10.1016/B978-0-12-815669-8.00013-0
Lamo, K., Bhat, D. J., Kour, K., & Solanki, S. P. S. (2017). Mutation studies in fruit crops: a review. International Journal of Current Microbiology and Applied Sciences, 6(12), 3620-3633.
Lynch, M., Blanchard, J., Houle, D., Kibota, T., Schultz, S., Vassilieva, L., & Willis, J. (1999). Perspective: spontaneous deleterious mutation. Evolution, 53(3), 645-663.
Miglani, G. S., 2017. Genome editing in crop improvement: Present scenario and future prospects. Journal of Crop Improvement, 31 (4), pp. 453-559.
Ohno, M., 2019. Spontaneous de novo germline mutations in humans and mice: rates, spectra, causes and consequences. Genes & genetic systems, 94 (1), pp. 13-22.
Oladosu, Y., Rafii, M. Y., Abdullah, N., Hussin, G., Ramli, A., Rahim, H. A., ... & Usman, M. (2016). Principle and application of plant mutagenesis in crop improvement: a review. Biotechnology & Biotechnological Equipment, 30(1), 1-16.
Oladosu, Y., Rafii, M. Y., Abdullah, N., Malek, M. A., Rahim, H. A., Hussin, G., ... & Kareem, I. (2015). Variabilidad genética y diversidad de mutantes de arroz, reveladas por características cuantitativas y marcadores moleculares. Agrociencia, 49(3), 249-266.
Olm, M. R., 2019. Strain-resolved metagenomic analysis of the premature infant microbiome and other natural microbial communities. University of California, Berkeley
Pathirana, R., 2011. Plant mutation breeding in agriculture. Plant sciences reviews, 6 (032), pp. 107-126.
Powell, J. R., 1997. Progress and prospects in evolutionary biology: the Drosophila model. Oxford University Press.
Qi, X., & Sandmeyer, S. (2012). Nonhomologous recombination: retrotransposons (W. J. Lennarz and M. D. B. T.-E. of B. C. (Second E. Lane (eds.); pp. 283–291). Academic Press. DOI: https://doi.org/https://doi.org/10.1016/B978-0-12-378630-2.00508-9
Raina, A., Laskar, R. A., Khursheed, S., Amin, R., Tantray, Y. R., Parveen, K., & Khan, S. (2016). Role of mutation breeding in crop improvement-past, present and future. Asian Research Journal of Agriculture, 2(2), 1-13.
Raina. A., R.A. Laskar, S. Khursheed., S. Khan., K. Parveen., R. Amin., & S. Khan. 2017. "Induce Physical and Chemical Mutagenesis for Improvement of Yield Attributing Traits and their Correlation Analysis in Chickpea." International Letters of Natural Sciences. 61:14-22.
Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PloS one, 8(6), e66428.
Rédei, G. P. (2008). Physical mutagens. In Encyclopedia of Genetics, Genomics, Proteomics and Informatics (pp. 1493–1493). Springer Netherlands. DOI: https://doi.org/10.1007/978-1- 4020-6754-9_12828
Rhoades, M. M. (1957). Lewis John Stadler, 1896-1954. National Academy of Sciences.
Ronald, P. (2011). Plant genetics, sustainable agriculture and global food security. Genetics, 188(1), 11-20.
Ronald, P. C. (2014). Lab to farm: applying research on plant genetics and genomics to crop improvement. PLoS biology, 12(6), e1001878.
Roychowdhury, R., & Tah, J. (2013). Mutagenesis—A potential approach for crop improvement. Crop improvement: new approaches and modern techniques, 149-187.
Schrader, T. J. (2003). Mutagens (B. B. T.-E. of F. S. Caballero and N. (Second Edition) (eds.); pp. 4059–4067). Academic Press. DOI: https://doi.org/10.1016/B0-12- 227055-X/00817-8
Serrat, X., Esteban, R., Guibourt, N., Moysset, L., Nogués, S., & Lalanne, E. (2014). EMS mutagenesis in mature seed-derived rice calli as a new method for rapidly obtaining TILLING mutant populations. Plant methods, 10, 1-14.
Shah J. K., Hamid U. K., Rahim D. K., Malik M. I., & YUSUF Z. (2000). Development of sugarcane mutants through in vitro mutagenesis. Pakistan Journal of Biological Sciences, 3(7), pp. 1123–1125. DOI: https://doi.org/10.3923/pjbs.2000.1123.1125.
Shu, Q. Y., Forster, B. P., & Nakagawa, H. (Eds.). (2012). Plant mutation breeding and biotechnology. Cabi.
Singh, H., Khar, A., & Verma, P., 2021. Induced mutagenesis for genetic improvement of Allium genetic resources: a comprehensive review. Genetic Resources and Crop Evolution, pp. 1-22.
Smith, H. H. (1958). Radiation in the production of useful mutations. Botanical Review, 24(1), pp. 1–24. http://www.jstor.org/stable/4353579
Suprasanna, P., Mirajkar, S. J., & Bhagwat, S. G. (2015). Induced mutations and crop improvement. Plant Biology and Biotechnology: Volume I: Plant Diversity, Organization, Function and Improvement, 593-617.
Ukai, Y. (2006). Effectiveness and efficiency of mutagenic treatments. In Gamma Field Symposia. https://www.naro.affrc.go.jp/archive/nias/eng/gfs/pdf/045.PDF
Wani, M. R., Dar, A.R., Tak, A., Amin, I., Shah, N. H., Rehman, R., Baba, M.Y., Raina, A., Laskar, R., Kozgar, M. I., & Khan, S. 2017. Chemo-induced pod and seed mutants in mungbean (Vigna radiata L. Wilczek). SAARC Journal of Agriculture, 15(2): 57-67.
Wani, M. R., Khan, S., & Kozgar, M. I. (2011). Induced chlorophyll mutations. I. Mutagenic effectiveness and efficiency of EMS, HZ and SA in mungbean. Frontiers of Agriculture in China, 5, 514-518.
Williams, A. B. (2016). Genome instability in bacteria: causes and consequences. In Genome Stability (pp. 69-85). Academic Press.
Wilson, K., Long, D., Swinburne, J., & Coupland, G., 1996. A Dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. The Plant Cell, 8 (4), pp. 659-671.
Yali, W., & Mitiku, T. (2022). Mutation breeding and its importance in modern plant breeding. Journal of Plant Sciences, 10(2), 64-70.