Concerns regarding global food security have escalated significantly owing to the climate changes, diminishing agricultural land, growing population and the increasing demand of natural resources. Plant growth and productivity, along with the quality of crops around the sphere, are disapprovingly wedged by abiotic factors including drought, flooding, heat, salinity, nutrient deficiency, ozone, heavy metals and UV radiation etc. Speed breeding (SB) technique represents a pioneer tactic to reduce the breeding cycle and enhance crop development. By adjusting critical elements for growth and development of plants for instance photoperiod, light quality and intensity, temperature, relative humidity, plant nutrition and planting density, this method efficiently inspires flowering and seed production in controlled environments. SB is utilized in gene mapping, genetic engineering and the combination of traits, which improves crop resilience by utilizing allelic diversity. The combination of speed breeding with gene editing, genotyping and genomic selection offers significant potential. Nevertheless, SB encounters challenges associated with infrastructure, variations in genotypes and possible stress reactions. To sum up, SB represents a strong and hopeful strategy for tackling issues related to food security and improving crop genetics.
Breeding cycle, Gene editing, Genetic gain, Genomic selection, Speed breeding, Photoperiod, Rapid generation
Adams, S. R., Pearson, S., Hadley, P., & Patefield, W. M. (1999). The Effects of Temperature and Light Integral on the Phases of Photoperiod Sensitivity in Petunia× hybrida. Annals of Botany, 83(3), 263-269. https://doi.org/10.1006/anbo.1998.0817
Ahmad, S., Makhmale, S., Bosamia, T. C., Sangh, C., & Nawade, B. (2021). Speed breeding: a potential tool for mitigating abiotic stresses. In Stress Tolerance in Horticultural Crops (pp. 51-61). Woodhead Publishing.https://doi.org/10.1016/B978-0-12-822849-4.00012-7.
Alahmad, S., Dinglasan, E., Leung, K. M., Riaz, A., Derbal, N., Voss-Fels, K. P., Able, J. A., Bassi, F. M., Christopher, J., & Hickey, L. T. (2018). Speed breeding for multiple quantitative traits in durum wheat. Plant Methods, 14(1), 36. https://doi.org/10.1186/s13007-018-0302-y
Araus, J. L., Kefauver, S. C., Zaman-Allah, M., Olsen, M. S., & Cairns, J. E. (2018). Translating High-Throughput Phenotyping into Genetic Gain. Trends in Plant Science, 23(5), 451–466. https://doi.org/10.1016/j.tplants.2018.02.001
Asati, R., Tripathi, M. K., Tiwari, S., Yadav, R. K., & Tripathi, N. (2022). Molecular breeding and drought tolerance in chickpea. Life, 12(11), 1846. https://doi.org/10.3390/life12111846
Bassi, F. M., Bentley, A. R., Charmet, G., Ortiz, R., & Crossa, J. (2016). Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Science, 242, 23-36. https://doi.org/10.1016/j.plantsci.2015.08.021
Bayat, L., Arab, M., Aliniaeifard, S., Seif, M., Lastochkina, O., & Li, T. (2018). Effects of growth under different light spectra on the subsequent high light tolerance in rose plants. AoB Plants, 10(5), ply052. https://doi.org/10.1093/aobpla/ply052
Begna, T. (2022). Speed breeding to accelerate crop improvement. International Journal of Agricultural Science and Food Technology, 8(2), 178-186. https://doi.org/10.17352/2455-815X.000161
Bergstrand, K.J., Suthaparan, A., Mortensen, L. M., & Gislerød, H. R. (2016). Photosynthesis in horticultural plants in relation to light quality and CO2 concentration. European Journal of Horticultural Science, 81(5), 237–242. https://doi.org/10.17660/eJHS.2016/81.5.1
Bhatta, M., Sandro, P., Smith, M. R., Delaney, O., Voss-Fels, K. P., Gutierrez, L., & Hickey, L. T. (2021). Need for speed: manipulating plant growth to accelerate breeding cycles. Current Opinion in Plant Biology, 60, 101986. https://doi.org/10.1016/j.pbi.2020.101986
Bhawar, P. C., Tiwari, S., Tripathi, M. K., Tomar, R. S., & Sikarwar, R. S. (2020). Screening of groundnut germplasm for foliar fungal diseases and population structure analysis using gene based SSR markers. Current journal of Applied Science and Technology, 39(2),75-84. doi: 10.9734/cjast/2020/v39i230500.
Bonea, D. (2022). Speed breeding and its importance for the improvement of agricultural crops. " Annals of the University of Craiova-Agriculture Montanology Cadastre Series", 52(1), 59-66. https://doi.org/10.52846/aamc.v52i1.1314
Bugbee, B., & Koerner, G. (1997). Yield comparisons and unique characteristics of the dwarf wheat cultivar ‘USU-Apogee.’ Advances in Space Research, 20(10), 1891–1894. https://doi.org/10.1016/S0273-1177(97)00856-9
Cazzola, F., Bermejo, C. J., Guindon, M. F., & Cointry, E. (2020). Speed breeding in pea (Pisum sativum L.), an efficient and simple system to accelerate breeding programs. Euphytica, 216(11), 178. https://doi.org/10.1007/s10681-020-02715-6
Choudhary, M. L., Tripathi, M. K., Tiwari, S., Pandya, R. K., Gupta, N., Tripathi, N., & Parihar, P. (2021). Screening of pearl millet [Pennisetum glaucum (L.) R. Br.] germplam lines for drought tolerance based on morpho-physiological traits and SSR markers. Current Journal of Applied Science and Technology, 40(5), 46-63.
Chaudhary, N., & Sandhu, R. (2024). A comprehensive review on speed breeding methods and applications. Euphytica, 220(3), 42. https://doi.org/10.1007/s10681-024-03300-x
Chiurugwi, T., Kemp, S., Powell, W., & Hickey, L. T. (2019). Speed breeding orphan crops. Theoretical and Applied Genetics, 132(3), 607–616. https://doi.org/10.1007/s00122-018-3202-7
Croser, J. S., Pazos-Navarro, M., Bennett, R. G., Tschirren, S., Edwards, K., Erskine, W., ... & Ribalta, F. M. (2016). Erratum to: Time to flowering of temperate pulses in vivo and generation turnover in vivo–in vitro of narrow-leaf lupin accelerated by low red to far-red ratio and high intensity in the far-red region. Plant Cell, Tissue, and Organ Culture, 127(3), 601-601.
Davis, P.A., Burns, C., 2016. Photobiology in protected horticulture. Food Energy Security 5 (4), 223-238. https://doi.org/10.1002/fes3.97
Gaba, Y., Pareek, A., & Singla-Pareek, S. L. (2021). Raising Climate-Resilient Crops: Journey From the Conventional Breeding to New Breeding Approaches. Current Genomics, 22(6), 450–467. https://doi.org/10.2174/1389202922666210928151247
Georgii, E., Jin, M., Zhao, J., Kanawati, B., Schmitt-Kopplin, P., Albert, A., Winkler, J. B., & Schäffner, A. R. (2017). Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis. BMC Plant Biology, 17(1), 120. https://doi.org/10.1186/s12870-017-1062-y
Ghosh, S., Watson, A., Gonzalez-Navarro, O. E., Ramirez-Gonzalez, R. H., Yanes, L., Mendoza-Suárez, M., ... & Hickey, L. T. (2018). Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nature protocols, 13(12), 2944-2963.https://doi.org/10.1101/369512
Giliberto, L., Perrotta, G., Pallara, P., Weller, J. L., Fraser, P. D., Bramley, P. M., Fiore, A., Tavazza, M., & Giuliano, G. (2005). Manipulation of the Blue Light Photoreceptor Cryptochrome 2 in Tomato Affects Vegetative Development, Flowering Time, and Fruit Antioxidant Content. Plant Physiology, 137(1), 199–208. https://doi.org/10.1104/pp.104.051987
Harrison, D., da Silva, M., Wu, C., de Oliveira, M., Ravelombola, F., Florez‐Palacios, L., Acuña, A., & Mozzoni, L. (2021). Effect of light wavelength on soybean growth and development in a context of speed breeding. Crop Science, 61(2), 917–928. https://doi.org/10.1002/csc2.20327
Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and climate extremes, 10, 4-10. https://doi.org/10.1016/j.wace.2015.08.001
Hickey, L. T., Germán, S. E., Pereyra, S. A., Diaz, J. E., Ziems, L. A., Fowler, R. A., Platz, G. J., Franckowiak, J. D., & Dieters, M. J. (2017). Speed breeding for multiple disease resistance in barley. Euphytica, 213(3), 64. https://doi.org/10.1007/s10681-016-1803-2
Hickey, L. T., Lawson, W., Arief, V. N., Fox, G., Franckowiak, J., & Dieters, M. J. (2012). Grain dormancy QTL identified in a doubled haploid barley population derived from two non-dormant parents. Euphytica, 188(1), 113–122. https://doi.org/10.1007/s10681-011-0577-9
Hickey, L. T., N. Hafeez, A., Robinson, H., Jackson, S. A., Leal-Bertioli, S. C. M., Tester, M., Gao, C., Godwin, I. D., Hayes, B. J., & Wulff, B. B. H. (2019). Breeding crops to feed 10 billion. Nature Biotechnology, 37(7), 744–754. https://doi.org/10.1038/s41587-019-0152-9
Jähne, F., Hahn, V., Würschum, T., & Leiser, W. L. (2020). Speed breeding short-day crops by LED-controlled light schemes. Theoretical and Applied Genetics, 133(8), 2335–2342. https://doi.org/10.1007/s00122-020-03601-4
Lamichhane, S., & Thapa, S. (2022). Advances from Conventional to Modern Plant Breeding Methodologies. Plant Breeding and Biotechnology, 10(1), 1–14. https://doi.org/10.9787/PBB.2022.10.1.1
Makhmale, S., Makwana, A.N., Barad, A.V., & Nawade, B., 2015. Physiology of flowering- the case of mango. International journal of applied research, (11), 1008-1012
Mishra, N., Tripathi, M. K., Tripathi, N., Tiwari, S., Gupta, N., & Sharma, A. (2021). Validation of drought tolerance gene-linked microsatellite markers and their efficiency for diversity assessment in a set of soybean genotypes. Current Journal of Applied Science and Technology, 40(25), 48-57.
Mishra, N., Tripathi, M. K., Tiwari, S., Tripathi, N., & Trivedi, H. K. (2022a). Morphological and molecular screening of soybean genotypes against yellow mosaic virus disease. Legume Research, 45(10), 1309-1316.
Mishra, N., Tripathi, M. K., Tiwari, S., Tripathi, N., Gupta, N., Sharma, A., ... & Tiwari, S. (2022). Characterization of soybean genotypes on the basis of yield attributing traits and SSR molecular markers. Innovations in Science and Technology; BP International: Hong Kong, China, 3, 87-106.https://doi.org/10.9734/bpi/ist/v3/2471C
Mishra, R., & Amrate, P. K. (2024). Genetic Diversity in Crop Improvement-A Cornerstone for Sustainable Agriculture and Global Food Security. In Advances in Plant Biotechnology (Volume 1) (pp. 1-21). Cornous Publications LLP.https://doi.org/https://doi.org/10.37446/volbook032024/1-21
Mishra, R., Tripathi, M. K., Tripathi, N., Singh, J., Yadav, P. K., Sikarwar, R. S., Singh, Y., & Tiwari, S. (2024b). Breeding for Major Genes against Drought Stress in Soybean. In M. K. Tripathi & N. Tripathi (Eds.), Advances in Plant Biotechnology (Vol. 1, pp. 22–68). Cornous Publications LLP, Puducherry, India. https://doi.org/https://doi.org/10.37446/volbook032024/22-68
Morris, M. L., & Bellon, M. R. (2004). Participatory plant breeding research: Opportunities and challenges for the international crop improvement system. Euphytica, 136(1), 21–35. https://doi.org/10.1023/B:EUPH.0000019509.37769.b1
O’Connor, D. J., Wright, G. C., Dieters, M. J., George, D. L., Hunter, M. N., Tatnell, J. R., & Fleischfresser, D. B. (2013). Development and Application of Speed Breeding Technologies in a Commercial Peanut Breeding Program. Peanut Science, 40(2), 107–114. https://doi.org/10.3146/PS12-12.1
Paliwal, S., Tripathi, M.K., Tiwari, S., Tripathi, N., Payasi, D.K., Tiwari, P.N., Singh, K., Yadav, R.K., Asati, R. & Chauhan, S. (2023). Molecular advances to combat different biotic and abiotic stresses in linseed (Linum usitatissimum L.): A comprehensive review. Genes. 14(7):1461. https://doi.org/10.3390/genes14071461
Pandey, S., Singh, A., Parida, S. K., & Prasad, M. (2022). Combining speed breeding with traditional and genomics‐assisted breeding for crop improvement. Plant Breeding, 141(3), 301–313. https://doi.org/10.1111/pbr.13012
Pasala, R., Chennamsetti, M., Patil, B., Kadirvel, P., Geethanjali, S., Nagaram, S., ... & Mathur, R. K. (2024). Revolutionizing Crop Production: The Imperative of Speed Breeding Technology in Modern Crop Improvement. Crop Breeding Genetics and Genomics, 6(2), 1-23. https://doi.org/10.20900/cbgg20240003
Pfeiffer, N. E. (1926). Microchemical and morphological studies of effect of light on plants. Botanical Gazette, 81(2), 173-195.
Potts, J., Jangra, S., Michael, V. N., & Wu, X. (2023). Speed Breeding for Crop Improvement and Food Security. Crops, 3(4), 276–291. https://doi.org/10.3390/crops3040025
Rajpoot, N. S., Tripathi, M. K., Tiwari, S., Tomar, R. S., Tripathi, N., Sikarwar, R. S., & Tomar, S. S. (2022). Morphological and molecular characterization of Indian mustard germplasm lines. Research and Development in Science and Technology, 4, 151-165. DOI: 10.9734/bpi/rdst/v4/2307B
Rana, M. M., Takamatsu, T., Baslam, M., Kaneko, K., Itoh, K., Harada, N., Sugiyama, T., Ohnishi, T., Kinoshita, T., Takagi, H., & Mitsui, T. (2019). Salt Tolerance Improvement in Rice through Efficient SNP Marker-Assisted Selection Coupled with Speed-Breeding. International Journal of Molecular Sciences, 20(10), 2585. https://doi.org/10.3390/ijms20102585
Richard, C., Christopher, J., Chenu, K., Borrell, A., Christopher, M., & Hickey, L. (2018). Selection in Early Generations to Shift Allele Frequency for Seminal Root Angle in Wheat. The Plant Genome, 11(2). https://doi.org/10.3835/plantgenome2017.08.0071
Samineni, S., Sen, M., Sajja, S. B., & Gaur, P. M. (2020). Rapid generation advance (RGA) in chickpea to produce up to seven generations per year and enable speed breeding. The Crop Journal, 8(1), 164–169. https://doi.org/10.1016/j.cj.2019.08.003
Saxena, K., Saxena, R. K., & Varshney, R. K. (2017). Use of immature seed germination and single seed descent for rapid genetic gains in pigeon pea. Plant Breeding, 136(6), 954–957. https://doi.org/10.1111/pbr.12538
Schoen, A., Wallace, S., Holbert, M. F., Brown‐Guidera, G., Harrison, S., Murphy, P., Sanantonio, N., van Sanford, D., Boyles, R., Mergoum, M., Rawat, N., & Tiwari, V. (2023). Reducing the generation time in winter wheat cultivars using speed breeding. Crop Science, 63(4), 2079–2090. https://doi.org/10.1002/csc2.20989
Shakoor, N., Lee, S., & Mockler, T. C. (2017). High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Current opinion in plant biology, 38, 184-192.https://doi.org/10.1016/j.pbi.2017.05.006
Sharma, S., Tripathi, M.K., Tiwari, S., Solanki, R.S., Chauhan, S., Tripathi, N., Dwivedi, N. & Tiwari, P.N. (2023). Discriminant function analysis for yield improvement in bread wheat (Triticum aestivum L.). Pharma Innovation, 12 (5):224-232.
Sharma, S., Kumar, A., Dhakte, P., Raturi, G., Vishwakarma, G., Barbadikar, K. M., Das, B. K., Shivaraj, S. M., Sonah, H., & Deshmukh, R. (2023). Speed Breeding Opportunities and Challenges for Crop Improvement. Journal of Plant Growth Regulation, 42(1), 46–59. https://doi.org/10.1007/s00344-021-10551-8
Siemens, C. W. (1880). III. On the influence of electric light upon vegetation, and on certain physical principles involved. Proceedings of the Royal Society of London, 30(200-205), 210-219. https://doi.org/10.1098/rspl.1879.0108
Singh, I., Sheoran, S., Kumar, B., Kumar, K., & Rakshit, S. (2021). Speed breeding in maize (Zea mays) vis-à -vis in other crops: Status and prospects. The Indian Journal of Agricultural Sciences, 91(9). https://doi.org/10.56093/ijas.v91i9.116059
Song, P., Wang, J., Guo, X., Yang, W., & Zhao, C. (2021). High-throughput phenotyping: Breaking through the bottleneck in future crop breeding. The Crop Journal, 9(3), 633–645. https://doi.org/10.1016/j.cj.2021.03.015
Taiz, L., & Zeiger, E. (1991). Plant physiology: Mineral nutrition. The Benjamin Cummings Publishing Co., Redwood City, 100, 119.
Tiwari, P. N., Tiwari, S., Sapre, S., Babbar, A., Tripathi, N., Tiwari, S., & Tripathi, M. K. (2023). Prioritization of microsatellite markers linked with drought tolerance associated traits in chickpea (Cicer arietinum L.). Legume Research, 46(11), 1422-1430.
Tiwari, P. N., Tiwari, S., Sapre, S., Babbar, A., Tripathi, N., Tiwari, S., & Tripathi, M. K. (2023). Prioritization of microsatellite markers linked with drought tolerance associated traits in chickpea (Cicer arietinum L.). Legume Research, 46(11), 1422-1430.https://doi.org/10.5281/zenodo.7697640
Tripathi, N., Tripathi, M. K., Tiwari, S., & Payasi, D. K. (2022). Molecular breeding to overcome biotic stresses in soybean: update. Plants, 11(15), 1967. https://doi.org/10.3390/plants11151967
Uğur, T. A. N., & GÖREN, H. K. (2023). Speed breeding: An innovative approach for accelerated genetic improvement in agricultural crops and integrating with molecular-based approaches. Pioneer and Contemporary Studies in Agriculture, Forest and Water Issues; Duvar Yayınları: Izmir, Turkey, 241-264.
van Nocker, S., & Gardiner, S. E. (2014). Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Horticulture Research, 1(1), 14022. https://doi.org/10.1038/hortres.2014.22
Varshney, R. K., Bohra, A., Yu, J., Graner, A., Zhang, Q., & Sorrells, M. E. (2021). Designing Future Crops: Genomics-Assisted Breeding Comes of Age. Trends in Plant Science, 26(6), 631–649. https://doi.org/10.1016/j.tplants.2021.03.010
Verma, R., Tripathi, M. K., Tiwari, S., Pandya, R. K., Tripathi, N., & Parihar, P. (2021). Screening of pearl millet [Pennisetum glaucum (L.) R. Br.] genotypes against blast disease on the basis of disease indexing and gene specific SSR markers. Int J Curr Microbiol Appl Sci, 10(02), 1108-1117.
Wanga, M. A., Shimelis, H., Mashilo, J., & Laing, M. D. (2021). Opportunities and challenges of speed breeding: A review. Plant Breeding, 140(2), 185–194. https://doi.org/10.1111/pbr.12909
Watson, A., Ghosh, S., Williams, M. J., Cuddy, W. S., Simmonds, J., Rey, M.-D., Asyraf Md Hatta, M., Hinchliffe, A., Steed, A., Reynolds, D., Adamski, N. M., Breakspear, A., Korolev, A., Rayner, T., Dixon, L. E., Riaz, A., Martin, W., Ryan, M., Edwards, D., … Hickey, L. T. (2018). Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants, 4(1), 23–29. https://doi.org/10.1038/s41477-017-0083-8
Wolter, F., Schindele, P., & Puchta, H. (2019). Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites. BMC Plant Biology, 19(1), 176. https://doi.org/10.1186/s12870-019-1775-1
Yadav, P.K., Singh, A.K., Tripathi, M.K., Tiwari, S., Yadav, S.K.& Tripathi, N. (2022). Morpho-physiological and molecular characterization of maize (Zea mays L.) genotypes for drought tolerance. European Journal of Applied Sciences, 10(6):65-87.
Yadav, R. K., Tripathi, M. K., Tiwari, S., Tripathi, N., Asati, R., Patel, V., ... & Payasi, D. K. (2023). Breeding and genomic approaches towards development of fusarium wilt resistance in chickpea. Life, 13(4), 988.https://doi.org/10.3390/life13040988
Yadav, R. K., Tripathi, M. K., Tiwari, S., Tripathi, N., Asati, R., Chauhan, S., Tiwari, P. N., & Payasi, D. K. (2023b). Genome editing and improvement of abiotic stress tolerance in crop plants. Life, 13(7), 1456. https://doi.org/10.3390/life13071456
Yoshida, H., Hikosaka, S., Goto, E., Takasuna, H., & Kudou, T. (2012). Effects of light quality and light period on flowering of everbearing strawberry in a closed plant production system. In VII International Symposium on Light in Horticultural Systems 956 (pp.107-112). https://doi.org/10.17660/ActaHortic.2012.956.9
Zheng, Z., Wang, H. B., Chen, G. D., Yan, G. J., & Liu, C. J. (2013). A procedure allowing up to eight generations of wheat and nine generations of barley per annum. Euphytica, 191(2), 311–316. https://doi.org/10.1007/s10681-013-0909-z