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Artificial Intelligence and Machine 

Learning in Breeding Programs 

 

V. Sandeep Varma 

 

Plant breeding is crucial for addressing global challenges like food security, climate change 

resilience, and sustainable agriculture. The integration of Artificial Intelligence (AI) and 

Machine Learning (ML) techniques has revolutionized traditional breeding methods, enabling 

the development of improved crop varieties. AI and ML algorithms are used for tasks such as 

genotype-phenotype prediction, genomic selection, trait discovery, and optimization of 

breeding schemes. These technologies help identify genetic markers associated with desirable 

traits, enabling breeders to select plants with desired characteristics more efficiently. AI-driven 

models can predict the performance of novel genotypes under different environmental 

conditions, aiding in the development of resilient and high-yielding crop varieties. AI-powered 

tools can optimize breeding strategies by simulating breeding outcomes, reducing time and 

resource constraints. However, challenges such as data quality, model interpretability, and 

ethical considerations need to be addressed. Additionally, the accessibility of advanced 

computational resources and expertise remains a barrier for many breeders, especially in 

developing countries. The future of AI and ML in plant breeding holds great promise, with 

continued advancements in computational biology, genomics, and data analytics. Collaboration 

between breeders, data scientists, and biotechnologists is essential for leveraging AI and ML 

technologies to their full potential in addressing global agricultural challenges. 
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Introduction  

 

Evolution of Artificial intelligence and machine learning in plant breeding 

AI and ML initially served as data analysis tools in traditional breeding methodologies. With high-throughput 

sequencing technologies and genomic data growth, AI and ML have become indispensable assets in modern 

breeding programs. Early stages of AI and ML adoption in plant breeding involved statistical models and 

computational algorithms for genotype-phenotype prediction tasks. As AI and ML technologies advanced, 

breeders began exploring efficient techniques like deep learning algorithms for genotype-phenotype 
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prediction and trait discovery. Deep learning models like CNNs and RNNs showed superior performance in 

analyzing large-scale genomic and phenotypic datasets.  

 

Applications of artificial intelligence and machine learning in breeding programs  

It includes  

• Genotype-phenotype prediction 

• Genomic selection 

• Trait discovery and characterization 

• Breeding scheme optimization 

 

1. Genotype-phenotype prediction 

 

Genomic data processing and feature extraction 

Chen et al., (2018), Ringnér (2008), and other researchers have contributed significantly to the field of 

genomic data analysis. They have highlighted the importance of preprocessing in ensuring the quality and 

reliability of genomic data. The preprocessing process involves data cleaning, normalization, and feature 

extraction. These steps help to remove noise, errors, and inconsistencies, ensuring the data is comparable and 

suitable for downstream analyses. Feature selection and dimensionality reduction techniques are also crucial 

in genomic analysis, as they help identify the most relevant subset of features for a particular analysis. By 

selecting informative features, researchers can focus computational resources on variables that contribute 

most to the prediction or classification task, enhancing the efficiency and effectiveness of downstream 

analyses. 

 

 
Figure 1. Flow chart of preprocessing and feature extraction (Chum et al.,2011) 

 

Prediction models and algorithms 

Gianola et al., (2009) research on genotype-phenotype prediction focuses on traditional regression models 

like linear and logistic regression, which are widely used in association studies and quantitative trait locus 

mapping to understand the complex relationships between genetic variation and plant traits. 

 

Types of machine learning algorithms 

Random forests: It is a popular ensemble learning method, use the power of decision trees to predict 

phenotypic traits by aggregating predictions from multiple trees trained on different subsets of the data 

(Breiman, 2001).  
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Neural networks: It is particularly deep learning architectures, have emerged as powerful tools for capturing 

intricate genotype-phenotype relationships and extracting latent features from genomic data.  

Convolutional neural networks (CNNs) and recurrent neural networks (RNNs): They have been adapted 

to genomic sequence data, enabling researchers to predict phenotypic outcomes based on DNA sequences, 

gene expression profiles, and epigenetic modifications (Alipanahi et al., 2015; Angermueller et al., 2016).  

 

2. Genomic selection 

 

AI and ML-based genomic prediction models 

Genomic best linear unbiased prediction (GBLUP):  a statistical approach that estimates breeding values 

by fitting a linear mixed model to genomic data. GBLUP uses genomic relationships among individuals, 

captured through marker-based kinship matrices, to estimate genetic effects across the genome while 

accounting for population structure and genetic relatedness (VanRaden, 2008).  

Bayesian method: It represents another class of algorithms employed in genomic prediction, offering 

flexibility and the ability to incorporate prior knowledge and uncertainty into the modeling framework. 

Bayesian regression models, such as Bayesian LASSO and Bayesian Ridge Regression, enable the estimation 

of marker effects and shrinkage of coefficients, effectively capturing the polygenic architecture of traits while 

avoiding overfitting (Habier et al., 2007).  

 

Integration of phenotypic and genomic data 

 

Jiang, and Reif (2015) have explored the integration of phenotypic and genomic data in plant breeding 

programs. They proposed the Genomic Best Linear Unbiased Prediction (GBLUP) framework, which 

integrates phenotypic measurements as fixed effects in prediction models, enhancing prediction accuracy by 

capturing additional sources of variation and reducing residual error. Another strategy is multi-trait prediction 

models, which jointly predict breeding values for multiple correlated traits using genomic and phenotypic 

information (Figure 2). These models exploit genetic correlations among traits to improve prediction 

accuracy and facilitate multi-trait selection strategies. The high-throughput phenotypic and genotypic data 

collected from large crop germplasm and breeding populations can be integrated with AI technology, such 

as phenotypic diversity, SNPs polymorphisms, QTL analysis, GWAS analysis, genomics selection, and 

genome sequence. AI technologies are applied to predict crop phenotype and produce novel breeding 

strategies through computation and training models. 

 

Case studies demonstrate the successful application of genomic selection (GS) in crop improvement:  

 

Maize breeding: In a study by Rincent et al., (2014), GS successfully improved maize breeding program 

yield and stress resistance by integrating genomic and phenotypic data, leading to the development of elite 

hybrids with superior performance. 

Wheat breeding: A study by Rutkoski et al., (2012) demonstrated GS effectively predicted grain yield and 

Fusarium head blight resistance in wheat breeding populations, resulting in significant gains compared to 

conventional breeding methods. 

Rice breeding: Researchers and breeders successfully developed blast-resistant rice varieties using genomic 

information, reducing disease yield and ensuring food security in rice-dependent regions through 

collaborative efforts. (Spindel et al.,2015) 
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Horticultural breeding: In a study by Kumar et al., (2012), GS was used to predict breeding values for fruit 

firmness and acidity in apple breeding populations, leading to the development of new apple cultivars with 

improved post-harvest storage characteristics and consumer appeal. 

 

 
Figure 2. Artificial Intelligence used as a powerful tool for the prediction of high-throughput crop 

phenotyping and gene functional analysis in modern crop breeding. (Khan et al., 2022) 

 

3. Trait discovery and characterization 

 

Identification of genetic markers: GWAS, a statistical method, uses AI algorithms like logistic regression, 

random forests, and gradient boosting to identify genetic markers associated with desirable traits. Deep 

learning architectures like Convolutional Neural Networks and Recurrent Neural Networks help analyze 

genomic sequences and identify regulatory elements. By integrating AI and ML techniques into genetic 

marker discovery pipelines, breeders can accelerate the identification of key genetic loci, enabling targeted 

selection and genomic prediction in breeding programs.  

 

Multi-Omics integration: The integration of multi-omics data, including genomics, transcriptomics, 

metabolomics, and epigenomics, offers a comprehensive approach to trait characterization in plant breeding, 

enabling a deeper understanding of the molecular mechanisms underlying complex traits and facilitating 

more precise trait prediction and selection like abiotic stress tolerance (Figure 3.). These data layers enable a 

comprehensive understanding of complex traits, enabling precise trait prediction and selection. Hirsch et al., 

(2014) work on genome-wide association studies (GWAS) and linkage mapping helps identify candidate 

genes and genetic markers associated with target traits. Shi et al., (2020) work on transcriptional changes and 

regulatory networks provides insights into gene regulatory mechanisms. Saito and Matsuda (2010) work on 

metabolic profiles and biochemical pathways reveals metabolic signatures associated with trait phenotypes. 

Epigenomic data provides insights into DNA methylation, histone modifications, and chromatin accessibility. 
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Figure 3. Integrative multi-omics approaches to confer abiotic stress tolerance in plants. 

(Roychowdhury et al.,2023) 

 

4. Breeding scheme optimization 

 

Simulation and optimization models 

Simulation models: Simulation models play a crucial role in designing and optimizing breeding schemes, 

allowing breeders to explore different breeding strategies, evaluate their performance, and identify optimal 

decision pathways to achieve breeding objectives efficiently.  

Optimization models: These models utilize mathematical programming and algorithmic approaches to 

identify optimal breeding strategies and decision pathways that maximize genetic gain while satisfying 

breeding constraints and objectives (Crossa et al., 2017). Optimization models formulate breeding problems 

as mathematical optimization problems, where decision variables represent breeding actions (e.g., selection 

intensity, mating designs) and objective functions quantify breeding goals (e.g., maximizing genetic gain, 

minimizing breeding costs) (Whishart et al., 2019).  

 

Accelerating breeding cycles  

 

Strategies for accelerating breeding cycles using AI and ML techniques, such as speed breeding, marker-

assisted selection (MAS), and genomic prediction, have become pivotal in modern plant breeding programs. 

 

Speed breeding: Watson et al., (2018) study on speed breeding, utilizing AI and ML algorithms, 

demonstrates its effectiveness in shortening generation times and accelerating breeding cycles. This 

technique automates data collection, extracts informative traits, and expedites selection decisions, reducing 

time for variety development. 

Marker-assisted selection (MAS): AI and ML techniques enhance MAS by improving marker-trait 

association analysis, optimizing marker selection, and predicting phenotypic performance based on genomic 

data (Crossa et al., 2017). By integrating MAS with genomic prediction models, breeders can prioritize 

marker-assisted crosses, accelerate trait introgression, and enhance selection accuracy, thereby shortening 

breeding cycles and accelerating genetic gain.  
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Genomic prediction: Genomic prediction uses genome-wide molecular markers to predict breeding values 

and select superior individuals for breeding, without the need for extensive phenotyping (Heffner et al.,2009). 

AI and ML algorithms enhance genomic prediction by capturing complex genotype-phenotype relationships, 

improving prediction accuracy, and accelerating breeding progress (Hickey et al.,2017). By incorporating 

advanced machine learning models, such as deep learning architectures and Bayesian methods, genomic 

prediction enables breeders to expedite selection decisions, reduce generation intervals, and accelerate variety 

development in plant breeding programs.  In a study by Jarquín et al., (2014), By integrating genomic 

prediction models with multi-environment trials and field data, breeders were able to accurately predict 

breeding values for yield and other agronomic traits in soybean breeding populations.  

 

5. Beyond traditional plant breeding 

 

Robotics and automation in phenotyping: Robotics and automation play a crucial role in advancing high-

throughput phenotyping (HTP) and data collection in plant breeding and agricultural research. They enable 

researchers to efficiently collect large volumes of phenotypic data from plant populations, accelerating 

breeding progress and enhancing the accuracy of trait evaluations. 

High- throughput phenotyping: Automated imaging platforms equipped with high-resolution cameras, 

sensors, and robotic systems can capture detailed phenotypic information, such as plant growth dynamics, 

canopy architecture, leaf morphology, and physiological traits, with high precision and throughput (Paulus 

et al., 2014).  

Data collection: Robotics and automation technologies are instrumental in streamlining data collection 

workflows and reducing manual labor in field and laboratory settings. Autonomous vehicles, drones, and 

robotic systems equipped with sensors and actuators can navigate field environments, collect samples, and 

perform measurements with minimal human intervention (Haghighattalab et al., 2016).  

Controlled environment phenotyping (CEP): Robotics and automation enable the development of 

controlled environment phenotyping (CEP) facilities like Automated growth chambers, greenhouses, and 

phenotyping platforms equipped with environmental sensors and robotic systems enable researchers to 

conduct reproducible experiments under controlled conditions, facilitating the study of genotype-

environment interactions and the characterization of plant responses to abiotic and biotic stresses. 

 

Conclusion  

 

AI and ML have the potential to revolutionize plant breeding and address global agricultural challenges. 

These technologies enable breeders to analyze vast amounts of genetic and phenotypic data more efficiently 

and accurately than traditional methods, facilitating genotype-phenotype prediction, trait discovery, and 

breeding value estimation with greater precision and speed (Miotto et al., 2018). AI-driven breeding 

approaches can develop crop varieties with improved stress tolerance, disease resistance, and nutritional 

quality, ensuring food security and sustainability in the face of changing climatic conditions and evolving 

pest pressures (Tallis et al., 2018). Moreover, AI and ML have the potential to democratize access to breeding 

tools and resources, empowering farmers, particularly in developing countries, to participate in crop 

improvement efforts and benefit from technological innovations. By harnessing these technologies, 

researchers, breeders, and policymakers can accelerate innovation, foster resilience, and ensure food security 

for future generations. 
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